跳到主要內容

臺灣博碩士論文加值系統

(18.207.132.116) 您好!臺灣時間:2021/07/29 19:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王文皓
研究生(外文):Wen-Hao Wang
論文名稱:探討金屬有機框架材料結構性質與甲烷氣體分子吸附之關係
論文名稱(外文):Exploring the Correlation between Structure Properties and Methane Adsorption of Metal-Organic Frameworks
指導教授:黃慶怡
指導教授(外文):Ching-I Huang
口試委員:張志祥張博凱
口試委員(外文):Chih-Hsiang ChangBor-Kae Chang
口試日期:2015-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:91
中文關鍵詞:金屬有機框架甲烷結構性質
外文關鍵詞:Metal-Organic FrameworksMethaneStructure-Properties
相關次數:
  • 被引用被引用:1
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用理論模擬方法建構與計算實驗上現有38組金屬有機框架材料(MOFs)之密度(D)、體表面積(VSA)、質量表面積(GSA)、比孔洞體積(SPV)、孔隙率(VF)、孔洞尺寸(PS)等各項結構參數,並探討MOFs結構參數與65bar下甲烷氣體單位體積吸附量(cm3(STP)/cm3)之關聯性。
我們發現孔隙率、孔洞尺寸及質量表面積此三項結構參數的調控會影響甲烷吸附量,其中孔洞尺寸尤其重要,因為具有高吸附量之MOFs材料的孔洞尺寸都偏小,最佳的孔洞尺寸範圍落在5~13Å,而MOFs的材料孔洞尺寸的改變源於所使用配位分子的結構大小,含三反應官能基的配位分子在反應官能基方向以苯環或碳鏈延長會使得孔洞尺寸超過最佳範圍,所以此類MOFs較不具有設計上的發展性。然而含四反應官能基的配位分子加入1~2個苯環環長度的延長都仍可維持最佳孔洞尺寸範圍,或是在配位分子中引入氮環(嘧啶)可以增加配位分子的柔軟性,提高甲烷吸附的效果,且此類MOFs都可達到240 cm3(STP)/cm3左右的甲烷吸附量,使得其在設計與發展上相當具有潛力,有機會突破現有MOFs材料的最高甲烷吸附量。
最後藉由定量構效關係(Quantitative Structure−Property Relationship, QSPR)得到VF、DP、GSA與甲烷吸附量之關係式:
,根據此關係式,我們預測新型MOFs材料若能有效控制小尺寸的孔洞尺寸及搭配合適的質量表面積,並最大限度的提升孔隙率,則65bar下的甲烷吸附量有機會超過300 cm3(STP)/cm3,接近美國能源局制定的標準。


In this study, we employ simulation methods to build and calculate density(D)、volumetric surface area(VSA)、gravimetric surface area(GSA)、specific pore volume (SPV)、void fraction(VF) and pore size(PS) of thirty-eight types of metal-organic frameworks (MOFs) and explore the correlation between these structural properties and methane volumetric adsorption capacity at 65bar and 298K in MOFs.
We find that VF、PS and GSA mainly correlate methane adsorption capacity, especially of pore size. MOFs with high methane adsorption capacities have smaller pore size and the optimal pore size is in the range 5-13 Å.The geometry size of organic linker mainly affect MOFs’ pore size. We also find that expanding tritoptic carboxylate linkers with benzyl or alkyl chains will makes MOFs’ pore size beyond optimal range. Consequently, MOFs with tritoptic carboxylate linkers are hard to enhance methane volumetric adsorption capacity through modifying its organic linkers. However, expanding tetratopic carboxylate linkers with one to two benzyl or alkyl chains still maintains MOFs’ pore size in optimal range. In addition, introduction of pyrimidine groups into the tetratopic carboxylate linkers can increase the dynamic freedom of linkers and thus improve adsorption performance. This kinds of MOFs can reach methane volumetric adsorption capacities up to about 240 (cm3(STP)/cm3) and thus are promising candidate MOFs materials.We build multilinear regression models for predicting the methane adsorption capacity at 65bar and yield following reasonable model:

According to this model, small pore size、suitable gravimetric surface area and high void fraction are necessary structural conditions for high methane volumetric adsorption capacity at 65bar in MOFs.


誌謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 ix
第一章 前言 1
第二章 模擬方法 19
2.1模型建構 19
2.1力場與勢能函數 21
2.3結構參數模擬 23
2.4 線性迴歸分析 25
第三章 結果與討論 28
3.1 交互比對各項結構參數之間的關係,探討影響吸附量之重要因素 28
3.1.1密度、比孔洞體積及孔隙率與甲烷吸附量之關係 28
3.1.2體表面積、質量表面積與甲烷吸附量之關係 29
3.1.3孔洞尺寸、比孔洞體積、孔隙率以及質量表面積與甲烷吸附量之關係 30
3.2 探討MOFs材料之金屬簇、配位分子及結構參數與吸附量之間的關係 31
3.2.1以Cu2(CO2)4為金屬簇,含三反應官能基配位分子之MOFs材料 32
3.2.2以Zn4O(CO2)6為金屬簇,含三反應官能基配位分子之MOFs材料 33
3.2.3以Cu2(CO2)4為金屬簇,含四反應官能基配位分子之MOFs材料 33
3.2.4新型含四反應官能基配位分子MOFs材料可能的設計策略 34
3.3 利用QSPR分析法得到預測65bar下甲烷吸附量之關係式 35
第四章 結論 37
參考文獻 49
附錄一 MOFs材料模型修正與建構 54
附錄二 結構參數總表 89


1.Annual Energy Outlook 2013-with Projections to 2040, http://www.eia.gov/forecasts/aeo/pdf/0383(2013).pdf.
2.A. Celzard and V. Fierro, Energy & fuels, 2005, 19, 573-583.
3.D. Lozano-Castello, J. Alcaniz-Monge, M. A. De la Casa-Lillo, D. Cazorla-Amorós and A. Linares-Solano, Fuel, 2002, 81, 1777-1803.
4.C. F. Blazek, J. Grimes, P. Freman, B. K. Bailey and C. Colucci, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem, 1994, 39, 476-481.
5.Methane Hydrates and the potential natural gas boom, http://www.naturalgaseurope.com/methane-hydrates-and-the-potential-natural-gas-boom.
6.Alternative Fuels Data Center-Fuel Properties Comparison, http://www.afdc.energy.gov/fuels/fuel_comparison_chart.pdf.
7.R. A. Munson and R. A. Clifton, Natural gas storage with zeolites, US Dept. of the Interior, 1971.
8.V. C. Menon and S. Komarneni, J. Porous. Mater., 1998, 5, 43-58.
9.C. Zhong and S. Wang, Acta Chim. Sinica, 2006, 23, 2375-2378.
10.K. R. Matranga, A. L. Myers and E. D. Glandt, Chem. Eng. Sci., 1992, 47, 1569-1579.
11.Methane Opportunities for Vehicular Energy, Advanced Research Project Agency - Energy, U.S. Dept. of Energy, Funding Opportunity no. DE-FOA-0000672, 2012.
12.M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O''Keefe and O. M. Yaghi, Science, 2002, 295, 469-471.
13.Y. He, W. Zhou, G. Qian and B. Chen, Chem. Soc. Rev., 2014, 43, 5657-5678.
14.T. Grant Glover, G. W. Peterson, B. J. Schindler, D. Britt and O. Yaghi, Chem. Eng. Sci., 2011, 66, 163-170.
15.D. Han, F. L. Jiang, M. Y. Wu, L. Chen, Q. H. Chen and M. C. Hong, Chem. Commun., 2011, 47, 9861-9863.
16.N. Klein, H. C. Hoffmann, A. Cadiau, J. Getzschmann, M. R. Lohe, S. Paasch, T. Heydenreich, K. Adil, I. Senkovska, E. Brunner and S. Kaskel, J. Mater. Chem., 2012, 22, 10303.
17.N. Klein, I. Senkovska, I. A. Baburin, R. Grunker, U. Stoeck, M. Schlichtenmayer, B. Streppel, U. Mueller, S. Leoni, M. Hirscher and S. Kaskel, Chem. Eur. J, 2011, 17, 13007-13016.
18.H. Li, M. Eddaoudi, M. O''Keefe and O. M. Yaghi, Nature, 1999, 402, 276-279.
19.S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen and I. D. Williams, Science, 1999, 283, 1148-1150.
20.F. Gandara, H. Furukawa, S. Lee and O. M. Yaghi, J. Am. Chem. Soc., 2014, 136, 5271-5274.
21.R. P. Ojha, P. A. Lemieux, P. K. Dixon, A. J. Liu and D. J. Durian, Nature, 2004, 427, 521-523.
22.R. D. Kennedy, V. Krungleviciute, D. J. Clingerman, J. E. Mondloch, Y. Peng, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, J. T. Hupp, T. Yildirim, O. K. Farha and C. A. Mirkin, Chem. Mater., 2013, 25, 3539-3543.
23.S. Ma, D. Sun, J. M. Simmons, C. D. Collier, D. Yuan and H. C. Zhou, J. Am. Chem. Soc., 2008, 130, 1012-1016.
24.J. Pang, F. Jiang, M. Wu, D. Yuan, K. Zhou, J. Qian, K. Su and M. Hong, Chem. Commun., 2014, 50, 2834-2836.
25.U. Stoeck, S. Krause, V. Bon, I. Senkovska and S. Kaskel, Chem. Commun., 2012, 48, 10841-10843.
26.H. M. Wen, B. Li, D. Yuan, H. Wang, T. Yildirim, W. Zhou and B. Chen, J. Mater. Chem. A, 2014, 2, 11516-11522.
27.L. Xiang, I. Telepeni, A. J. Blake, A. Dailly, C. M. Brown, J. M. Simmons, M. Zoppi, G. S. Walker, K. M. Thomas, T. J. Mays, P. Hubberstey, N. R. Champness and M. Schroder, J. Am. Chem. Soc., 2009, 131, 2159-2171.
28.D. Zhao, D. Yuan, A. Yakovenko and H. C. Zhou, Chem. Commun., 2010, 46, 4196-4198.
29.G. Barin, V. Krungleviciute, D. A. Gomez-Gualdron, A. A. Sarjeant, R. Q. Snurr, J. T. Hupp, T. Yildirim and O. K. Farha, Chem. Mater., 2014, 26, 1912-1917.
30.O. K. Farha, C. E. Wilmer, I. Eryazici, B. G. Hauser, P. A. Parilla, K. O''Neill, A. A. Sarjeant, S. T. Nguyen, R. Q. Snurr and J. T. Hupp, J. Am. Chem. Soc., 2012, 134, 9860-9863.
31.Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen, Y. Yang, W. Zhou, M. O''Keeffe and B. Chen, Angew. Chem. Int. Ed., 2011, 50, 3178-3181.
32.C. E. Wilmer, O. K. Farha, T. Yildirim, I. Eryazici, V. Krungleviciute, A. A. Sarjeant, R. Q. Snurr and J. T. Hupp, Energy Environ. Sci., 2013, 6, 1158-1163.
33.Y. Yan, S. Yang, A. J. Blake, W. Lewis, E. Poirier, S. A. Barnett, N. R. Champness and M. Schroder, Chem. Commun., 2011, 47, 9995-9997.
34.D. Zhao, D. Yuan, D. Sun and H. C. Zhou, J. Am. Chem. Soc., 2009, 131, 9186-9188.
35.W. Lu, D. Yuan, T. A. Makal, J. R. Li and H. C. Zhou, Angew. Chem. Int. Ed., 2012, 51, 1580-1584.
36.Y. He, S. Xiang, Z. Zhang, S. Xiong, C. Wu, W. Zhou, T. Yildirim, R. Krishna and B. Chen, J. Mater. Chem. A, 2013, 1, 2543-2551.
37.G. Q. Kong, Z. D. Han, Y. He, S. Ou, W. Zhou, T. Yildirim, R. Krishna, C. Zou, B. Chen and C. D. Wu, Chem. Eur. J, 2013, 19, 14886-14894.
38.D. Yuan, D. Zhao, D. Sun and H. C. Zhou, Angew. Chem. Int. Ed., 2010, 49, 5357-5361.
39.B. Li, H. M. Wen, H. Wang, H. Wu, M. Tyagi, T. Yildirim, W. Zhou and B. Chen, J. Am. Chem. Soc., 2014, 136, 6207-6210.
40.X. Rao, J. Cai, J. Yu, Y. He, C. Wu, W. Zhou, T. Yildirim, B. Chen and G. Qian, Chem. Commun., 2013, 49, 6719-6721.
41.T. Duren, L. Sarkisov, O. M. Yaghi and R. Q. Snurr, Langmuir, 2004, 20, 2683-2689.
42.B. Liu, Q. Yang, C. Xue, C. Zhong, B. Chen and B. Smit, J. Phys. Chem. C, 2008, 112, 9854-9860.
43.S. M. P. Lucena, P. G. M. Mileo, S. P. F. G and C. C. L, J. Am. Chem. Soc., 2011, 133, 19282-19285.
44.J. A. Mason, M. Vennstra and J. R. Long, Chem. Sci., 2014, 5, 32-51.
45.L. Sarkisov and J. Kim, Chem. Eng. Sci., 2015, 121, 322-330.
46.B. J. Sikora, R. Winnegar, D. M. Proserpio and R. Q. Snurr, Micropor. Mesopor. Mat., 2014, 186, 207-213.
47.C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp and R. Q. Snurr, Nat. Chem., 2012, 4, 83-89.
48.M. Fernandez, T. K. Woo, C. E. Wilmer and R. Q. Snurr, J. Phys. Chem. C, 2013, 117, 7681-7689.
49.J. J. T. Perry, J. A. Perman and M. J. Zaworotko, Chem. Soc. Rev., 2009, 38, 1400-1417.
50.A. G. Wong-Foy, A. J. Matzger and O. M. Yaghi, J. Am. Chem. Soc., 2006, 128, 3494-3495.
51.H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O''Keefe, J. Kim and O. M. Yaghi, Science, 2010, 329, 424-428.
52.Y. He, W. Zhou, T. Yildirim and B. Chen, Energy Environ. Sci., 2013, 6, 2735-2744.
53.R. P. Sheridan, Proc. Natl. Acad. Sci. U.S.A., 1989, 86, 8165-8169.
54.F. H. Allen, Acta Cryst., 2002, B58, 380-388.
55.L. M. Stephen, D. O. Barry and A. G. Williams, J. Phys. Chem., 1990, 94, 8897-8909.
56.A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III and W. M. Skiff, J. Am. Chem. Soc., 1992, 114, 10024-10035.
57.L. Sarkisov and A. Harrison, Mol. Simulat., 2011, 37, 1248-1257.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top