跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/06 08:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴郁文
研究生(外文):Yu-Wen Lai
論文名稱:兩性型規則樹枝狀高分子應用於製備多孔性蜂窩狀膜之研究
論文名稱(外文):Honeycomb-like Films Based on Amphiphilic Poly(urea/malonamide) Dendrons
指導教授:鄭如忠
指導教授(外文):Ru-Jong Jeng
口試委員:蘇文烱李榮和丁維和童世煌
口試委員(外文):Wen-Chiung SuRong-Ho LeeWei-Ho TingShih-Huang Tung
口試日期:2015-08-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:103
中文關鍵詞:兩性型樹枝狀高分子混摻氫鍵極性
外文關鍵詞:Amphiphilic dendronBlendHydrogen bondingPolarity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將兩性型的樹枝狀高分子當作界面活性劑,混摻入四種不同極性的高分子溶液中,再利用高濕度空氣作為驅動力,使具有自主裝能力的兩性型樹枝狀高分子排列在液滴外圍,並防止液滴聚集;未聚集的液滴經過排列之後,形成規則六角形蜂窩狀孔洞結構。
實驗使用的poly (urea/malonamide) 樹枝狀高分子,內部是相對親水、具有強氫鍵的poly (urea/malonamide) 結構;外圍是相對疏水、具有較強凡得瓦力的長烷鏈段,高代數下長烷鏈段較多,氫鍵也較多,形成的兩性高分子親疏水平衡較佳,使我們能夠透過breath figure的製程,得到規則蜂窩狀多孔膜的結構。
本研究選用極性較低的聚苯乙烯、極性中等的聚碳酸酯和聚甲基丙烯酸甲酯以及極性較高的側鏈型聚氨酯四種高分子為基材,與兩性型樹枝狀高分子進行混摻,藉由調控不同的混摻比例和不同的溶質與溶劑比例,來探討不同極性的高分子與樹枝狀高分子混摻後,對孔洞型態的影響。
由SEM觀察,中等極性的高分子與兩性型樹枝狀高分子混摻後,較易形成規則的蜂窩狀孔洞;低極性的高分子則需要在適當的條件下,才能夠形成規則的蜂窩狀孔洞;高極性的高分子則需要再更為嚴苛的環境下,規則蜂窩狀孔洞才有機會形成。而從接觸角的測試中,發現不同的混摻比例對接觸角的影響較不同的溶質與溶劑比例來得大。另一方面,聚碳酸酯和聚甲基丙烯酸甲酯與兩性型樹枝狀高分子混摻後,在較低的混摻比例下,形成的膜能夠自行與玻璃基材分離。


Hydrogen bond-rich amphiphilic dendrons were utilized as surfactants to be respectively blended with four polymers with different polarities. Under highly humid environment, a driving force compels the amphiphilic dendrons to gather at the periphery of water droplets. Owing to the self-assembling ability of dendrons, water droplets won’t gather with each other, and would form hexagonal honeycomb structures. Consequently, honeycomb-like polymeric films could be easily induced by a breath figure process.
A building block, 4-isocyanato-4’(3,3-dimethyl-2,4-dioxo-azetidino) diphenylmethane (IDD), featuring dual-functional groups, has a highly reactive isocyanate functional group, and a selectively reactive azetidine-2,4–dione functional group. Utilizing high reactivity of isocyanate and selective reactivity of azetidine-2,4-dione, higher generation poly(urea/malonamide) dendrons were obtained by the addition reaction with another building block diethyltriamine (DETA). The sequential addition reactions were developed under mild condition without resorting to painstaking protection-deprotection or activation methodology.
Higher generation dendrons exihibited better hydrophilic/ hydrophobic balance owing to their abundance of urea/malonamide linkages and peripheral long alkyl chains. Furthermore, after reacting a 2.5 generation dendron with N-(3-aminopropyl)diethanolamine (APDEA) , this amphiphilic compound (A-[G-2.5]-C18) exhibits strong hydrogen bonding interaction at the focal segment and intense van der Waals force at the peripheral part.
This amphiphilic dendron was then blended with a low-polarity polymer–(polystyrene, PS), medium-polarity polymer –(polycarbonate and poly(methyl methacrylate), PC and PMMA) and a high-polarity polymer–(polyurethane, PU), repcetively. Morphologies of the porous structures would be dependent on hydrophilic/hydrophobic balance and concentrations of amphiphilic dendrons.
The best honeycomb films could be achieved by dendrons respectively blended with PC or PMMA, i.e., medium-polarity polymers, through the investigation of SEM images. With further tuning of the conditions, good quality honeycomb films could be achieved for PS/dendron and PU/dendron systems. Apart from that, different blending ratios would exert much impact on contact angles when compared with other factors such as concentrations. Furthermore, free standing films could be obtained from PC/dendron and PMMA/dendron systems at low blending ratios.

誌謝 II
摘要 III
Abstract V
目錄 VIII
圖目錄 X
表目錄 XV
一、緒論 1
二、文獻回顧 3
2.1表面孔洞高分子材料 (porous polymer surfaces) 之應用 3
2.2 Breath Figures方法與機制 4
2.2.1 應用Breath figures法之製膜方式 7
2.2.2應用Breath figures法之高分子 8
2.2.3蜂窩狀高分子設計策略 15
2.3規則樹枝狀高分子 18
2.3.1規則樹枝狀高分子的合成路徑 20
2.3.2規則樹枝狀高分子的自組裝性質 22
2.3.3應用規則樹枝狀高分子於製備蜂窩狀孔洞 24
2.3.4 poly(urea/malonamide) dendrons應用於蜂窩狀高分子膜的合成與策略 31
2.4 研究動機 39
三、 實驗內容 40
3.1藥品及溶劑 40
3.2實驗儀器 43
3.3實驗流程圖 46
3.4 合成步驟 47
3.4.1合成dendron構築單元 47
3.4.2 C18系列polyurethane/malonamide dendron 之合成 49
3.4.3 兩性型dendron之合成 53
3.5規則蜂窩狀高分子膜製備 55
四、 結果與討論 56
4.1 Dendron的合成與鑑定 56
4.1.1反應選擇性單體IDD之合成與鑑定 56
4.1.2 C18系列收斂型poly(urethane/malonamide) dendron 之合成與鑑定 61
4.1.3 兩性型poly(urethane/malonamide) dendron 之合成與鑑定 74
4.2 不同極性高分子應用BF法製膜 76
4.2.1 高分子選材 76
4.2.2 低極性高分子基材對蜂窩狀孔洞的影響 78
4.2.3 中極性高分子基材對蜂窩狀孔洞的影響 81
4.2.4 高極性高分子基材對蜂窩狀孔洞的影響 88
4.3 C18系列收斂型poly(urethane/malonamide) dendron 之熱性質分析 91
4.3.1 C18系列收斂型poly(urethane/malonamide) dendron 之TGA熱重分析 91
4.3.2 C18系列收斂型poly(urethane/malonamide) dendron 之DSC微差掃描熱分析 92
4.4 高分子混摻系統之熱性質分析 93
4.4.1 TGA熱重分析 93
4.4.2 DSC微差掃描熱分析 94
五、 結論 95
六、 參考文獻 96



1.S.-W. Choi, Y. Zhang, Y.-C. Yeh, A. Lake Wooten, Y. Xia, Biodegradable porous beads and their potential applications in regenerative medicine. Journal of Materials Chemistry 22, 11442-11451 (2012).
2.I. Muylaert, A. Verberckmoes, J. De Decker, P. Van Der Voort, Ordered mesoporous phenolic resins: Highly versatile and ultra stable support materials. Advances in Colloid and Interface Science 175, 39-51 (2012).
3.T. P. Nguyen, P. L. Rendu, V. H. Tran, V. Parkhutik, R. F. Esteve, Electrical and Optical Properties of Conducting Polymer/Porous Silicon Structures. Journal of Porous Materials 7, 393-396 (2000).
4.M. Bokhari, R. J. Carnachan, S. A. Przyborski, N. R. Cameron, Emulsion-templated porous polymers as scaffolds for three dimensional cell culture: effect of synthesis parameters on scaffold formation and homogeneity. Journal of Materials Chemistry 17, 4088-4094 (2007).
5.G. Tan, M. Singh, J. He, V. T. John, G. L. McPherson, Use of a Self-Assembling Organogel as a Reverse Template in the Preparation of Imprinted Porous Polymer Films. Langmuir 21, 9322-9326 (2005).
6.E. Ostuni, C. S. Chen, D. E. Ingber, G. M. Whitesides, Selective Deposition of Proteins and Cells in Arrays of Microwells. Langmuir 17, 2828-2834 (2001).
7.M. L. K. Hoa, M. Lu, Y. Zhang, Preparation of porous materials with ordered hole structure. Advances in Colloid and Interface Science 121, 9-23 (2006).
8.D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Design and Preparation of Porous Polymers. Chemical Reviews 112, 3959-4015 (2012).
9.T. Pietsch, N. Gindy, A. Fahmi, Nano- and micro-sized honeycomb patterns through hierarchical self-assembly of metal-loaded diblock copolymer vesicles. Soft Matter 5, 2188-2197 (2009).
10.Y. Shin, X. S. Li, C. Wang, J. R. Coleman, G. J. Exarhos, Synthesis of Hierarchical Titanium Carbide from Titania-Coated Cellulose Paper. Advanced Materials 16, 1212-1215 (2004).
11.Y. Shin, C. Wang, G. J. Exarhos, Synthesis of SiC Ceramics by the Carbothermal Reduction of Mineralized Wood with Silica. Advanced Materials 17, 73-77 (2005).
12.J. Huang, T. Kunitake, Nano-Precision Replication of Natural Cellulosic Substances by Metal Oxides. Journal of the American Chemical Society 125, 11834-11835 (2003).
13.F. C. Meldrum, R. Seshadri, Porous gold structures through templating by echinoid skeletal plates. Chemical Communications 1, 29-30 (2000).
14.Y. Zhang, H. Ding, S. Wei, S. Liu, Y. Wang, F.-S. Xiao, Hierarchical macroporous epoxy resin templated from single semi-fluorinated surfactant. J Porous Mater 17, 693-698 (2010).
15.C. Tang, J. Bang, G. E. Stein, G. H. Fredrickson, C. J. Hawker, E. J. Kramer, M. Sprung, J. Wang, Square Packing and Structural Arrangement of ABC Triblock Copolymer Spheres in Thin Films. Macromolecules 41, 4328-4339 (2008).
16.H. Xiang, Y. Lin, T. P. Russell, Electrically Induced Patterning in Block Copolymer Films. Macromolecules 37, 5358-5363 (2004).
17.Y. Morikawa, S. Nagano, K. Watanabe, K. Kamata, T. Iyoda, T. Seki, Optical Alignment and Patterning of Nanoscale Microdomains in a Block Copolymer Thin Film. Advanced Materials 18, 883-886 (2006).
18.M. Srinivasarao, D. Collings, A. Philips, S. Patel, Three-Dimensionally Ordered Array of Air Bubbles in a Polymer Film. Science 292, 79-83 (2001).
19.G. Widawski, M. Rawiso, B. Francois, Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369, 387-389 (1994).
20.J. Aitkek, Breath figures. Nature 86, 516-517 (1911).
21.J. Giltay, Breath figures. Nature 86, 585 (1911).
22.U. H. F. Bunz, Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials. Advanced Materials 18, 973-989 (2006).
23.M. Hernandez-Guerrero, M. H. Stenzel, Honeycomb structured polymer films via breath figures. Polymer Chemistry 3, 563-577 (2012).
24.P. Escalé, L. Rubatat, L. Billon, M. Save, Recent advances in honeycomb-structured porous polymer films prepared via breath figures. European Polymer Journal 48, 1001-1025 (2012).
25.S. A. Jenekhe, X. L. Chen, Self-Assembly of Ordered Microporous Materials from Rod-Coil Block Copolymers. Science 283, 372-375 (1999).
26.H. Sun, L. Wu, Ordered honeycomb-patterned films via breath figures. Progress in Chemistry 22, 1784-1798 (2010).
27.N. Maruyama, T. Koito, J. Nishida, T. Sawadaishi, X. Cieren, K. Ijiro, O. Karthaus, M. Shimomura, Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films 327–329, 854-856 (1998).
28.D. Beysens, Dew nucleation and growth. Comptes Rendus Physique 7, 1082-1100 (2006).
29.K. Wong, M. Hernández-Guerrero, A. Granville, T. Davis, C. Barner-Kowollik, M. Stenzel, Water-assisted formation of honeycomb structured porous films. J Porous Mater 13, 213-223 (2006).
30.M. H. Stenzel, C. Barner-Kowollik, T. P. Davis, Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. Journal of Polymer Science Part A: Polymer Chemistry 44, 2363-2375 (2006).
31.L. V. Govor, I. A. Bashmakov, R. Kiebooms, V. Dyakonov, J. Parisi, Self-Organized Networks Based on Conjugated Polymers. Advanced Materials 13, 588-591 (2001).
32.S. D. Angus, T. P. Davis, Polymer Surface Design and Infomatics:  Facile Microscopy/Image Analysis Techniques for Self-Organizing Microporous Polymer Film Characterization. Langmuir 18, 9547-9553 (2002).
33.H. Yabu, M. Tanaka, K. Ijiro, M. Shimomura, Preparation of Honeycomb-Patterned Polyimide Films by Self-Organization. Langmuir 19, 6297-6300 (2003).
34.T. Nishikawa, M. Nonomura, K. Arai, J. Hayashi, T. Sawadaishi, Y. Nishiura, M. Hara, M. Shimomura, Micropatterns Based on Deformation of a Viscoelastic Honeycomb Mesh. Langmuir 19, 6193-6201 (2003).
35.L. Song, R. K. Bly, J. N. Wilson, S. Bakbak, J. O. Park, M. Srinivasarao, U. H. F. Bunz, Facile Microstructuring of Organic Semiconducting Polymers by the Breath Figure Method: Hexagonally Ordered Bubble Arrays in Rigid Rod-Polymers. Advanced Materials 16, 115-118 (2004).
36.A. Boker, Y. Lin, K. Chiapperini, R. Horowitz, M. Thompson, V. Carreon, T. Xu, C. Abetz, H. Skaff, A. D. Dinsmore, T. Emrick, T. P. Russell, Hierarchical nanoparticle assemblies formed by decorating breath figures. Nat Mater 3, 302-306 (2004).
37.W. Madej, A. Budkowski, J. Raczkowska, J. Rysz, Breath Figures in Polymer and Polymer Blend Films Spin-Coated in Dry and Humid Ambience. Langmuir 24, 3517-3524 (2008).
38.M. S. Park, J. K. Kim, Broad-Band Antireflection Coating at Near-Infrared Wavelengths by a Breath Figure. Langmuir 21, 11404-11408 (2005).
39.M. S. Park, W. Joo, J. K. Kim, Porous Structures of Polymer Films Prepared by Spin Coating with Mixed Solvents under Humid Condition. Langmuir 22, 4594-4598 (2006).
40.M. Orlov, I. Tokarev, A. Scholl, A. Doran, S. Minko, pH-Responsive Thin Film Membranes from Poly(2-vinylpyridine):  Water Vapor-Induced Formation of a Microporous Structure. Macromolecules 40, 2086-2091 (2007).
41.A. Muñoz-Bonilla, E. Ibarboure, E. Papon, J. Rodriguez-Hernandez, Engineering polymer surfaces with variable chemistry and topography. Journal of Polymer Science Part A: Polymer Chemistry 47, 2262-2271 (2009).
42.L. Roszol, T. Lawson, V. Koncz, Z. Noszticzius, M. Wittmann, T. Sarkadi, P. Koppa, Micropatterned Polyvinyl Butyral Membrane for Acid−Base Diodes. The Journal of Physical Chemistry B 114, 13718-13725 (2010).
43.K.-i. Hiwatari, T. Serizawa, F. Seto, A. Kishida, Y. Muraoka, M. Akashi, Graft Copolymers Having Hydrophobic Backbone and Hydrophilic Branches XXXIV. Fabrication and Control of Honeycomb Structure Prepared from Amphiphilic Graft Copolymers. Polym J 33, 669-675 (2001).
44.T. Nishikawa, R. Ookura, J. Nishida, K. Arai, J. Hayashi, N. Kurono, T. Sawadaishi, M. Hara, M. Shimomura, Fabrication of Honeycomb Film of an Amphiphilic Copolymer at the Air−Water Interface. Langmuir 18, 5734-5740 (2002).
45.L. A. Connal, P. A. Gurr, G. G. Qiao, D. H. Solomon, From well defined star-microgels to highly ordered honeycomb films. Journal of Materials Chemistry 15, 1286-1292 (2005).
46.A. Muñoz-Bonilla, M. Fernández-García, J. Rodríguez-Hernández, Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Progress in Polymer Science 39, 510-554 (2014).
47.J. Peng, Y. Han, Y. Yang, B. Li, The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer 45, 447-452 (2004).
48.J. Peng, Y. Han, J. Fu, Y. Yang, B. Li, Formation of Regular Hole Pattern in Polymer Films. Macromolecular Chemistry and Physics 204, 125-130 (2003).
49.E. Bormashenko, R. Pogreb, O. Stanevsky, Y. Bormashenko, Y. Socol, O. Gendelman, Self-assembled honeycomb polycarbonate films deposited on polymer piezoelectric substrates and their applications. Polymers for Advanced Technologies 16, 299-304 (2005).
50.B. Zhao, J. Zhang, H. Wu, X. Wang, C. Li, Fabrication of honeycomb ordered polycarbonate films using water droplets as template. Thin Solid Films 515, 3629-3634 (2007).
51.M. H. Stenzel, T. P. Davis, A. G. Fane, Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process. Journal of Materials Chemistry 13, 2090-2097 (2003).
52.L. Ghannam, M. Manguian, J. François, L. Billon, A versatile route to functional biomimetic coatings: Ionomers for honeycomb-like structures. Soft Matter 3, 1492-1499 (2007).
53.L. Billon, M. Manguian, V. Pellerin, M. Joubert, O. Eterradossi, H. Garay, Tailoring Highly Ordered Honeycomb Films Based on Ionomer Macromolecules by the Bottom-Up Approach. Macromolecules 42, 345-356 (2009).
54.A. E. Saunders, J. L. Dickson, P. S. Shah, M. Y. Lee, K. T. Lim, K. P. Johnston, B. A. Korgel, Breath figure templated self-assembly of porous diblock copolymer films. Physical Review E 73, 031608 (2006).
55.M. H. Stenzel-Rosenbaum, T. P. Davis, A. G. Fane, V. Chen, Porous Polymer Films and Honeycomb Structures Made by the Self-Organization of Well-Defined Macromolecular Structures Created by Living Radical Polymerization Techniques. Angewandte Chemie International Edition 40, 3428-3432 (2001).
56.J.-Z. Chen, Q.-L. Zhao, H.-C. Lu, J. Huang, S.-K. Cao, Z. Ma, Polymethylene-b-polystyrene diblock copolymer: Synthesis, property, and application. Journal of Polymer Science Part A: Polymer Chemistry 48, 1894-1900 (2010).
57.A. S. de León, A. Muñoz-Bonilla, M. Fernández-García, J. Rodríguez-Hernández, Breath figures method to control the topography and the functionality of polymeric surfaces in porous films and microspheres. Journal of Polymer Science Part A: Polymer Chemistry 50, 851-859 (2012).
58.A. S. de León, A. del Campo, M. Fernández-García, J. Rodríguez-Hernández, A. Muñoz-Bonilla, Hierarchically Structured Multifunctional Porous Interfaces through Water Templated Self-Assembly of Ternary Systems. Langmuir 28, 9778-9787 (2012).
59.V. D. Deepak, S. K. Asha, Self-Organization-Induced Three-Dimensional Honeycomb Pattern in Structure-Controlled Bulky Methacrylate Polymers:  Synthesis, Morphology, and Mechanism of Pore Formation. The Journal of Physical Chemistry B 110, 21450-21459 (2006).
60.D. A. Tomalia, Supramolecular chemistry: Fluorine makes a difference. Nat Mater 2, 711-712 (2003).
61.D. A. Tomalia, J. M. J. Fréchet, Discovery of dendrimers and dendritic polymers: A brief historical perspective*. Journal of Polymer Science Part A: Polymer Chemistry 40, 2719-2728 (2002).
62.M. V. Walter, M. Malkoch, Simplifying the synthesis of dendrimers: accelerated approaches. Chemical Society Reviews 41, 4593-4609 (2012).
63.E. Buhleier, W. Wehner, F. Vögtle, " Cascade"-and" Nonskid-Chain-like" Syntheses of Molecular Cavity Topologies. (1978).
64.D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith, A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym J 17, 117-132 (1985).
65.C. J. Hawker, J. M. J. Frechet, Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. Journal of the American Chemical Society 112, 7638-7647 (1990).
66.D. A. Tomalia, Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Progress in Polymer Science 30, 294-324 (2005).
67.C. C. Lee, J. A. MacKay, J. M. J. Frechet, F. C. Szoka, Designing dendrimers for biological applications. Nat Biotech 23, 1517-1526 (2005).
68.D. J. Pesak, J. S. Moore, Polar domains on globular macromolecules: Shape-persistent, amphiphilic tridendrons. Tetrahedron 53, 15331-15347 (1997).
69.L. Zhao, Z. Lin, Self-assembly of non-linear polymers at the air/water interface: the effect of molecular architecture. Soft Matter 7, 10520-10535 (2011).
70.G. M. Whitesides, B. Grzybowski, Self-Assembly at All Scales. Science 295, 2418-2421 (2002).
71.S. D. Hudson, H.-T. Jung, V. Percec, W.-D. Cho, G. Johansson, G. Ungar, V. S. K. Balagurusamy, Direct Visualization of Individual Cylindrical and Spherical Supramolecular Dendrimers. Science 278, 449-452 (1997).
72.V. Percec, C. H. Ahn, G. Ungar, D. J. P. Yeardley, M. Moller, S. S. Sheiko, Controlling polymer shape through the self-assembly of dendritic side-groups. Nature 391, 161-164 (1998).
73.V. Percec, W.-D. Cho, G. Ungar, Increasing the Diameter of Cylindrical and Spherical Supramolecular Dendrimers by Decreasing the Solid Angle of Their Monodendrons via Periphery Functionalization. Journal of the American Chemical Society 122, 10273-10281 (2000).
74.C. Park, I. H. Lee, S. Lee, Y. Song, M. Rhue, C. Kim, Cyclodextrin-covered organic nanotubes derived from self-assembly of dendrons and their supramolecular transformation. Proceedings of the National Academy of Sciences 103, 1199-1203 (2006).
75.C. Cheng, Y. Tian, Y. Shi, R. Tang, F. Xi, Ordered Honeycomb-Structured Films from Dendronized PMA-b-PEO Rod-Coil Block Copolymers. Macromolecular Rapid Communications 26, 1266-1272 (2005).
76.C. X. Cheng, Y. Tian, Y. Q. Shi, R. P. Tang, F. Xi, Porous Polymer Films and Honeycomb Structures Based on Amphiphilic Dendronized Block Copolymers. Langmuir 21, 6576-6581 (2005).
77.L. A. Connal, R. Vestberg, C. J. Hawker, G. G. Qiao, Dramatic morphology control in the fabrication of porous polymer films. Adv. Funct. Mater 18, 3706-3714 (2008).
78.F. Gong, X. Cheng, S. Wang, Y. Wang, Y. Gao, S. Cheng, Biodegradable comb-dendritic tri-block copolymers consisting of poly(ethylene glycol) and poly(l-lactide): Synthesis, characterizations, and regulation of surface morphology and cell responses. Polymer 50, 2775-2785 (2009).
79.S.-J. Hsieh, C.-C. Wang, C.-Y. Chen, Self-Assembling Microporous Matrix from Dendritic−Linear Copolymers Based on a Solvent-Induced Phase Separation Mechanism. Macromolecules 42, 4787-4794 (2009).
80.J. H. Kim, M. Seo, S. Y. Kim, Lithographically Patterned Breath Figure of Photoresponsive Small Molecules: Dual-Patterned Honeycomb Lines from a Combination of Bottom-Up and Top-Down Lithography. Advanced Materials 21, 4130-4133 (2009).
81.P. Lundberg, M. V. Walter, M. I. Montanez, D. Hult, A. Hult, A. Nystrom, M. Malkoch, Linear dendritic polymeric amphiphiles with intrinsic biocompatibility: synthesis and characterization to fabrication of micelles and honeycomb membranes. Polymer Chemistry 2, 394-402 (2011).
82.Y. Zhu, R. Sheng, T. Luo, H. Li, J. Sun, S. Chen, W. Sun, A. Cao, Honeycomb-Structured Films by Multifunctional Amphiphilic Biodegradable Copolymers: Surface Morphology Control and Biomedical Application as Scaffolds for Cell Growth. ACS Applied Materials & Interfaces 3, 2487-2495 (2011).
83.W.-H. Ting, C.-C. Chen, S. A. Dai, S.-Y. Suen, I. K. Yang, Y.-L. Liu, F. M. C. Chen, R.-J. Jeng, Superhydrophobic waxy-dendron-grafted polymer films viananostructure manipulation. Journal of Materials Chemistry 19, 4819-4828 (2009).
84.C.-C. Chang, T.-Y. Juang, W.-H. Ting, M.-S. Lin, C.-M. Yeh, S. A. Dai, S.-Y. Suen, Y.-L. Liu, R.-J. Jeng, Using a breath-figure method to self-organize honeycomb-like polymeric films from dendritic side-chain polymers. Materials Chemistry and Physics 128, 157-165 (2011).
85.T. W. G. Solomons, Organic Chemistry 6th Edition. 263 (1996).
86.T. T. Thomas, Ketenes. John Wiley & Sons, 38 (1995).
87.Y. Xu, B. Zhu, Y. Xu, A study on formation of regular honeycomb pattern in polysulfone film. Polymer 46, 713-717 (2005).
88.W. Dong, Y. Zhou, D. Yan, Y. Mai, L. He, C. Jin, Honeycomb-Structured Microporous Films Made from Hyperbranched Polymers by the Breath Figure Method. Langmuir 25, 173-178 (2009).
89.A. Muñoz-Bonilla, E. Ibarboure, E. Papon, J. Rodriguez-Hernandez, Self-Organized Hierarchical Structures in Polymer Surfaces: Self-Assembled Nanostructures within Breath Figures. Langmuir 25, 6493-6499 (2009).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top