跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 03:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許仲儉
研究生(外文):Chung-Chien Hsu
論文名稱:聚4-乙烯基吡啶與3,5-雙(十六烷氧基)苯甲酸形成之超分子的相分離行為與結構分析
論文名稱(外文):Phase Behaviors and Structure of Supramolecules Formed by Poly(4-vinylpyridine) and 3,5-Bis(hexadecyloxyl)benzoic Acid
指導教授:童世煌
指導教授(外文):Shih-Huang Tung
口試委員:廖文彬黃慶怡
口試日期:2015-08-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:31
中文關鍵詞:氫鍵超分子雙尾介面活性劑
外文關鍵詞:hydrogen bondingsupramoleculestwo-tailed surfactant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:64
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中探討了由聚4-乙烯基吡啶(Poly(4-vinylpyridine), P4VP)與3,5-雙(十六烷氧基)苯甲酸(3,5-Bis(hexadecyloxyl)benzoic acid, BHBA)經由氫鍵結合而成的超分子複合體。藉由傅立葉轉換紅外光譜觀察了在超分子複合體中的P4VP與BHBA,或著自由BHBA二聚體間的氫鍵接合情形。另外也利用了小角度X光繞射(Small angle X-ray scattering, SAXS)與廣角度X光繞射(Wide angle X-ray scattering, WAXS) 來了解超分子複合體和過剩的BHBA分子的結構型態,以及藉由示差掃描熱分析儀(Differential scanning calorimetry, DSC)與變溫SAXS觀察其熱性質與隨溫度的形態變化。由於其本身的雙尾分子結構,純的BHBA在退火及淬火後,分別產生了特殊的結晶結構以及層狀結構,並也在之後的P4VP(BHBA)x複合體中出現。另外意外地發現儘管超分子複合體有生成,在SAXS的散射中並未觀察到有生成任何規整結構,經推測原因應是BHBA的尾部結構的立體障礙對於形成層狀結構而言過大,而對於六角堆積柱狀結構則又過小。隨著BHBA的增加,在經過一飽和的平緩區後,在FTIR中亦可觀察到側鏈的脫落,而且因側鏈脫落造成的P4VP蜷曲也可由SAXS確定。在P4VP(BHBA)x,且x是BHBA對4VP重複單元的比例的情況下,在x = 0.8時觀察到有特殊的現象。在x = 0.8時,BHBA應已有剩餘,但卻未能形成羧酸二聚體,而且超分子複合體的排列特別地不規整。這些結果被解釋為因為剩餘的BHBA量不足以形成聚集,並穿插在超分子複合體的BHBA部分,進而干擾了BHBA層間的交互穿插。對於雙尾的側鏈分子而言,這是一個不同於其他單尾或三尾的側鏈分子的獨有的特徵。

In this study, the supramolecular complex of 3,5-bis(hexadecyloxyl)benzoic acid (BHBA) and Poly(4-vinylpyridine) (P4VP) via hydrogen bonding is investigated. FTIR was utilized for observing the hydrogen bonding between P4VP and BHBA or in free BHBA dimers. SAXS and WAXS was applied for studying the morphology of supramolecular complex and excess BHBA molecules, and the thermal property and morphology evolution with temperature is studied by DSC and in situ SAXS and WAXS. Due to its two-tailed molecular structure, pristine BHBA forms unique crystalline structure after annealed and lamellar structure after quenched, which both found in P4VP(BHBA)x complexes. Surprisingly, though with formation of supramolecular complex, no ordered structure is found in SAXS profile. The reason is considered as that the steric hindrance of tails of BHBA is too large for lamellar structure, and too weak for hexagonally-packing cylindrical structure. With addition of BHBA, detachment of side chains due to crystallizing competition is observed by FTIR after a saturating plateau and coiling of P4VP due to detachment is also confirmed by SAXS. For P4VP(BHBA)x, where x is the molar ratio of BHBA to 4VP repeating unit, it is found the x = 0.8 is unique point where BHBA is shown excess but does not form carboxylic acid dimer, and the alignment of supramolecular complex is especially less ordered. This is possibly because the amount of excess BHBA is too little for self-aggregating and they insert in BHBA domain in supramolecular complex, thus interfering with the interdigitating between BHBA domains. This is the distinct characteristic of supramolecular complex with two-tailed side chain molecule different from the complexes with single or three-tailed ones.

誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES v
Chapter 1 Introduction 1
Chapter 2 Literature Reviews 3
2.1 Hydrogen-Bonded Comb-like Supramolecules 3
Chapter 3 Experimental Section 7
3.1 Materials 7
3.1.1 Sample Preparation 7
3.2 Instruments 8
3.2.1 Fourier Transform Infrared Spectroscopy (FTIR) 8
3.2.2 Differential Scanning Calorimeter (DSC) 8
3.2.3 Small-Angle X-ray Scattering (SAXS) and Wide-Angle X-ray Scattering (WAXS) 8
Chapter 4 Results and Discussion 10
4.1 Hydrogen Bonding Complex 10
4.2 Structure Analysis of P4VP(BHBA)x 13
4.3 Thermal Behavior of P4VP(BHBA)x 16
Chapter 5 Conclusion 29
REFERENCE 30


1.Lehn, J.M., SUPRAMOLECULAR CHEMISTRY - SCOPE AND PERSPECTIVES MOLECULES, SUPERMOLECULES, AND MOLECULAR DEVICES. Angewandte Chemie-International Edition in English, 1988. 27(1): p. 89-112.
2.ten Brinke, G., J. Ruokolainen, and O. Ikkala, Supramolecular materials based on hydrogen-bonded polymers, in Hydrogen Bonded Polymers, W. Binder, Editor. 2007, Springer-Verlag Berlin: Berlin. p. 113-177.
3.Pollino, J.M. and M. Weck, Non-covalent side-chain polymers: design principles, functionalization strategies, and perspectives. Chemical Society Reviews, 2005. 34(3): p. 193-207.
4.Lai, T.-Y., et al., Phase Behavior and Structure of Supramolecules Formed by Poly(4-vinylpyridine) and Fanlike Benzoic Acid Derivative with Long Hydrophobic Tails. Macromolecules, 2015. 48(3): p. 717-724.
5.Wang, S.-J., et al., Phase Behavior of a Hydrogen-Bonded Polymer with Lamella-to-Cylinder Transition: Complex of Poly(4-vinylpyridine) and Small Dendritic Benzoic Acid Derivative. Macromolecules, 2012. 45(21): p. 8760-8769.
6.Chuang, W.-T., et al., Tetragonally Perforated Layer Structure via Columnar Ordering of 4′-(3,4,5-Trioctyloxybenzoyloxy)benzoic Acid in a Supramolecular Complex with Polystyrene-block-Poly(4-vinylpyridine). Chemistry of Materials, 2009. 21(6): p. 975-978.
7.Chuang, W.-T., et al., Directing the Interfacial Morphology of Hierarchical Structures of Dendron-Jacketed Block Copolymers via Liquid Crystalline Phases. Macromolecules, 2014. 47(17): p. 6047-6054.
8.Zhu, X., et al., Self-Organization of Polybases Neutralized with Mesogenic Wedge-Shaped Sulfonic Acid Molecules:  An Approach toward Supramolecular Cylinders. Journal of the American Chemical Society, 2006. 128(51): p. 16928-16937.
9.Liu, X., et al., Hydrogen-Bonded Polymers with Bent-Shaped Side Chains and Poly(4-vinylpridine) Backbone: Phase Behavior and Thin Film Morphologies. Macromolecules, 2014. 47(12): p. 3917-3925.
10.Wang, S.-J., et al., A complex of poly(4-vinylpyridine) and tolane based hemi-phasmid benzoic acid: towards luminescent supramolecular side-chain liquid crystalline polymers. Chemical Communications, 2014. 50(61): p. 8378-8381.
11.Ruokolainen, J., et al., Mesomorphic Structures in Flexible Polymer−Surfactant Systems Due to Hydrogen Bonding:  Poly(4-vinylpyridine)−Pentadecylphenol. Macromolecules, 1996. 29(10): p. 3409-3415.
12.Ikkala, O., et al., Ordering in self-organizing comb copolymer-like systems obtained by hydrogen bonding between charged or noncharged polymers and amphiphiles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999. 147(1–2): p. 241-248.
13.Ikkala, O., et al., Surfactant induced mesomorphic behaviour of flexible polymers. Macromolecular Symposia, 1996. 112(1): p. 191-198.
14.Ruokolainen, J., et al., Direct Imaging of Self-Organized Comb Copolymer-like Systems Obtained by Hydrogen Bonding:  Poly(4-vinylpyridine)−4-Nonadecylphenol. Macromolecules, 1998. 31(11): p. 3532-3536.
15.Chao, C.Y., et al., Orientational Switching of Mesogens and Microdomains in Hydrogen-Bonded Side-Chain Liquid-Crystalline Block Copolymers Using AC Electric Fields. Advanced Functional Materials, 2004. 14(4): p. 364-370.
16.Kosonen, H., et al., Self-organized supermolecules based on conducting polyaniline and hydrogen bonded amphiphiles. Synthetic Metals, 2001. 121(1–3): p. 1277-1278.
17.Kosonen, H., et al., Nanoscale conducting cylinders based on self-organization of hydrogen-bonded polyaniline supramolecules. Macromolecules, 2000. 33(23): p. 8671-8675.
18.Ikkala, O. and G. ten Brinke, Functional Materials Based on Self-Assembly of Polymeric Supramolecules. Science, 2002. 295(5564): p. 2407-2409.
19.Ikkala, O. and G. ten Brinke, Hierarchical self-assembly in polymeric complexes: Towards functional materials. Chemical Communications, 2004(19): p. 2131-2137.
20.Ruokolainen, J., et al., Critical Interaction Strength for Surfactant-Induced Mesomorphic Structures in Polymer−Surfactant Systems. Macromolecules, 1996. 29(20): p. 6621-6628.
21.Korhonen, J.T., et al., Self-Assembly and Hierarchies in Pyridine-Containing Homopolymers and Block Copolymers with Hydrogen-Bonded Cholesteric Side-Chains. Macromolecules, 2010. 43(3): p. 1507-1514.
22.Millikan, R.C. and K.S. Pitzer, The Infrared Spectra of Dimeric and Crystalline Formic Acid. Journal of the American Chemical Society, 1958. 80(14): p. 3515-3521.
23.Lee, J.Y., P.C. Painter, and M.M. Coleman, Hydrogen bonding in polymer blends. 4. Blends involving polymers containing methacrylic acid and vinylpyridine groups. Macromolecules, 1988. 21(4): p. 954-960.
24.Luyten, M.C., et al., Crystallization and Cocrystallization in Supramolecular Comb Copolymer-like Systems:  Blends of Poly(4-vinylpyridine) and Pentadecylphenol. Macromolecules, 1999. 32(13): p. 4404-4410.
25.de Moel, K., et al., Oscillatory Shear Flow-Induced Alignment of Lamellar Melts of Hydrogen-Bonded Comb Copolymer Supramolecules. Macromolecules, 2001. 34(9): p. 2892-2900.
26.Hofman, A.H., et al., Interaction Strength in Poly(4-vinylpyridine)–n-Alkylphenol Supramolecular Comb-Shaped Copolymers. Macromolecules, 2015. 48(5): p. 1554-1562.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top