跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 18:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡家瑜
研究生(外文):Chia-Yu Chien
論文名稱:環氧壓克力奈米複合樹脂之改質及其應用於抗菌牙科填補材料之研究
論文名稱(外文):Studies on Modified Epoxy Acrylate Nano-composite Resin for Antibacterial Dental Restorative Materials
指導教授:謝國煌謝國煌引用關係
口試委員:林江珍陳思賢
口試日期:2015-07-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:115
中文關鍵詞:牙科修復表沒食子兒茶素沒食子酸酯奈米鋅抗菌複合樹脂
外文關鍵詞:Dental restorative materialsEpigallocatechin gallateFluorideKaoliniteNano-zinc
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以二異氰酸異佛爾酮 (Isophorone diisocyanate, IPDI)及甲基丙烯酸-2-羥基乙酯 (2-Hydroxyethyl methacrylate, HEMA)進行改質環氧樹脂 (Epoxy acrylate, EA),進而合成出有機改質環氧樹脂HI-EA作為有機樹脂基質 (Resin matrix),再以奈米氧化鋁(Nano-Al2O3)和奈米二氧化矽(Nano-SiO2)作為無機填充材(Filler),混摻製備出牙科修復複合樹脂(Dental restorative composite resin)。為了改善繼發性齲齒(Secondary caries)的問題,我們在自行合成之複合樹脂中添加具有抗菌及抗齲齒成分,其中有同時可作為無機填料的釋氟高嶺土 (Fluoride releasing kaolinite)、表沒食子兒茶素沒食子酸酯 (Epigallocatechin gallate, EGCG)以及奈米鋅抗菌液,製備出一系列抗菌牙科複合樹脂,並探討其機械性質以及抗菌性。
本研究主要分為三大部分,第一部分為改質奈米片狀氧化鋁/釋氟高嶺土複合樹脂系列。由實驗結果可知,隨著高嶺土的比例增加,材料的抗菌效果越好,為了提升複合材料的抗菌性,且經由本實驗室發現EGCG具有一定抗菌性,因此,在不影響原本材料的機械性質的情況下,加入EGCG有助於提升材料的抗菌效果。接著再加入1000ug/g之EGCG後,但由於高嶺土質地較軟且無機含量受到限制,在機械性質上較不如預期。
第二部分為了改善複合樹脂的硬度,本研究乃製備出另一系列不同混摻比例之改質奈米二氧化矽/奈米球型氧化鋁,在將其與釋氟高嶺土進行混摻,製備出一系列的抗菌牙科複合樹脂。由於無機填料之含量可以到達70 wt%,此系列有較佳的硬度表現,而且材料在抗菌效果上與第一部分之奈米片狀氧化鋁/釋氟高嶺土複合樹脂系列有一樣的趨勢。
第三部分乃是以奈米鋅作為抗菌成份,在特定比例之改質奈米二氧化矽/奈米球型氧化鋁複合樹脂中,添加不同濃度的奈米鋅抗菌液使複合樹脂具有抗菌性。此系列材料由於無機填料的含量較高,在硬度表現上比市售商品好,添加1000 ppm奈米鋅抗菌液於複合樹脂中後,材料即具有一定的抗菌效果。


In this research, Epoxy acrylate (EA) was modified with isophorone diisocyanate (IPDI) and 2-Hydroxyethyl methacrylate (HEMA) to synthesize HI-EA, which was used as the resin matrix; whereas nano-aluminum oxide (Nano-Al2O3) and nano-silica (Nano-SiO2 ) was used as the inorganic filler to synthesize dental restorative composite resin. In order to overcome the problem of secondary caries, we have added antibacterial and anticavity elements into composite resin. By using materials that can also be used as inorganic filler: fluoride-releasing kaolinite, Epigallocatechin gallate (EGCG), and Nano-zinc antibacterial agent, we produced a series of antibacterial dental composite resins, and furthermore discussed their mechanical properties and antibacterial ability.
In the foliated nano-Al2O3/ fluoride-releasing kaolinite series, as the content of the fluoride-releasing kaolinite increased, the antibacterial ability increased too. Also, under the condition of not influencing the mechanical property of the material, adding EGCG improved the antibacterial ability as well. However, due to the texture of kaolinite being quite soft and with limited inorganic content, the result of mechanical property was under expectation.
In order to improve the hardness of the self-synthesized composite resins, we produced another series that contained modified nano-SiO2 mixed along with sphered nano-Al2O3 and fluoride-releasing kaolinite. Due to the content of inorganic filler can reach up to 70 wt%, this series has better hardness performance. Also the material has the same antibacterial trend as the foliated nano-Al2O3/ fluoride-releasing kaolinite series.
The last part of the research was to use nano-zinc as the antibacterial element to synthesis composite resin. Due to the higher inorganic filler content, this series has a higher performance in hardness compared to products available in the current market. After adding 1000 ppm of nano-zinc antibacterial agent into the composite resin, the materials would have certain antibacterial ability.

摘要 i
Abstract iii
主目錄 v
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2理想的牙科修復材料所需具備條件 3
1.3研究目的 4
第二章 文獻回顧 5
2.1 牙科修復材料簡介 5
2.2複合樹脂(Composite resin)的基本組成 7
2.3抗齲齒抗菌成分之原理與應用 12
2.3.1氟 12
2.3.1.1氟化物抑制齲齒的機制 12
2.3.1.2高嶺土 14
2.3.1.3高嶺土吸附氟化物(Fluoride)的機制 14
2.3.2表沒食子兒茶酚沒食子酸(Epigallocatechin gallate, EGCG) 16
2.3.3 奈米鋅的抗菌機制 19
2.4 二氧化矽 20
2.5溶膠-凝膠法 22
2.5.1溶膠-凝膠法簡介 22
2.5.2水解反應 23
2.5.3縮合反應 26
2.6氧化鋁 29
2.6.1氧化鋁簡介 29
2.6.2 矽烷偶合劑與氧化鋁反應原理 29
第三章 實驗方法 31
3.1 實驗藥品 31
3.2 實驗儀器 34
3.3 實驗方法 37
3.3.1樹脂基質HI-EA的合成 (HEMA-IPDI-EA) 37
3.3.2無機填料-改質奈米二氧化矽S100-15的製備 39
3.3.3無機填料-改質奈米片狀氧化鋁的製備 40
3.3.4無機填料-改質奈米球型氧化鋁A120-4的製備 41
3.3.5無機填料-釋氟高嶺土的製備 42
3.3.5.1高嶺土/ N-Methylformamide (K-NMF)的製備 42
3.3.5.2高嶺土/ Acrylamide含氟複合物的製備 42
3.3.5.3高嶺土/ Acrylamide含氟複合物矽烷化處理 43
3.3.6表沒食子兒茶素沒食子酸酯雙鍵改質(HI-EGCG) 44
3.3.7牙科修復材料之製備 46
3.3.7.1改質奈米片狀氧化鋁/釋氟高嶺土複合樹脂(FA82-15系列複合樹脂) 46
3.3.7.2改質奈米片狀氧化鋁/釋氟高嶺土/HI-EGCG複合樹脂(EFA82-15系列複合樹脂) 48
3.3.7.3改質奈米二氧化矽混奈米球型氧化鋁複合樹脂(70S100-15A120-4系列複合樹脂) 50
3.3.7.4改質奈米二氧化矽混奈米球型氧化鋁/釋氟高嶺土複合樹脂(F70S100-15A120-4系列複合樹脂) 52
3.3.7.5改質奈米二氧化矽混奈米球型氧化鋁/奈米鋅複合樹脂(Z75S100-15A120-4系列複合樹脂) 54
3.4材料性質測試 56
3.4.1傅立葉轉換紅外線光譜儀(Fourier-Transformed Infrared Spectra, FT-IR) 56
3.4.2動態光散射雷射(Dynamic Light Scattering, DLS)粒徑儀測試 56
3.4.3牙科修復材料複合樹脂錠片樣本之製作 56
3.4.4維克氏硬度(Vickers Hardness Test)測試 56
3.4.5直徑抗拉強度(Diametral Tensile Strength)測試 57
3.4.6聚合收縮(Polymerization Shrinkage)分析測試 58
3.4.7掃瞄式電子顯微鏡(Scanning Electron Microscope, SEM)測試 58
第四章 結果與討論 60
4.1傅立葉轉換紅外線光譜分析 60
4.1.1有機樹脂基質HI-EA之傅立葉轉換紅外線光譜分析 60
4.1.2表沒食子兒茶素沒食子酸酯(EGCG)改質雙鍵 61
4.2無機填料之粒徑大小分析 62
4.2.1無機填料-改質奈米片狀氧化鋁 62
4.2.1無機填料-改質奈米球型氧化鋁粒子 66
4.3 X光繞射(X-ray Diffraction, XRD)測試分析 68
4.4改質奈米片狀氧化鋁(A82-15)系列複合樹脂材料性質探討 69
4.4.1維克氏硬度測試分析 70
4.4.2直徑抗拉強度測試分析 73
4.4.3掃瞄式電子顯微鏡測試分析 76
4.4.4聚合收縮(Polymerization shrinkage)測試分析 83
4.5改質奈米二氧化矽(S100-15)混奈米球型氧化鋁(A120-4)系列複合樹脂材料性質探討 85
4.5.1維克氏硬度測試分析 85
4.5.2直徑抗拉強度測試分析 89
4.6改質奈米二氧化矽(S100-15)混奈米球型氧化鋁(A120-4)與釋氟高嶺土抗菌複合樹脂材料性質探討 92
4.6.1維克氏硬度測試分析 92
4.6.2直徑抗拉強度測試分析 94
4.6.3掃瞄式電子顯微鏡測試分析 96
4.6.4聚合收縮(Polymerization Shrinkage)測試分析 99
4.7改質奈米二氧化矽(S100-15)混奈米球型氧化鋁(A120-4)與奈米鋅系列抗菌複合樹脂材料性質探討 100
4.7.1維克氏硬度測試分析 100
4.7.2直徑抗拉強度測試分析 102
4.7.3掃瞄式電子顯微鏡測試分析 104
第五章 結論 107
第六章 參考文獻 109


1.Featherstone, J. D., The science and practice of caries prevention. The Journal of the American dental association 2000, 131 (7), 887-899.
2.(a) Guo, M.-K.; Hsieh, C.-C.; Hong, Y.-C.; Chen, R.-S., Effect of water fluoridation on prevalence of dental caries in Chung-Hsing New Village, Taiwan, after 9 years. Taiwan yi xue hui za zhi. Journal of the Formosan Medical Association 1984, 83 (10), 1035-1043; (b) Jenkins, G., Review of fluoride research since 1959. Archives of oral biology 1999, 44 (12), 985-992.
3.Rlla, G., On the role of calcium fluoride in the cariostatic mechanism of fluoride. Acta Odontologica 1988, 46 (6), 341-345.
4.Fejerskov, O.; Manji, F.; Baelum, V., The nature and mechanisms of dental fluorosis in man. Journal of dental research 1990, 69 (2 suppl), 692-700.
5.Mo, S.-s.; Bao, W.; Lai, G.-y.; Wang, J.; Li, M.-y., The microfloral analysis of secondary caries biofilm around Class I and Class II composite and amalgam fillings. BMC infectious diseases 2010, 10 (1), 241.
6. (a) Pereira, P.; Inokoshi, S.; Tagami, J., In vitro secondary caries inhibition around fluoride releasing materials. Journal of Dentistry 1998, 26 (5), 505-510; (b) Peris, A. R.; Mitsui, F. H.; Lobo, M. M.; Bedran-russo, A. K.; Marchi, G. M., Adhesive systems and secondary caries formation: Assessment of dentin bond strength, caries lesions depth and fluoride release. dental materials 2007, 23 (3), 308-316.
7.Chen, C.-Y.; Huang, C.-K.; Lin, S.-P.; Han, J.-L.; Hsieh, K.-H.; Lin, C.-P., Low-shrinkage visible-light-curable urethane-modified epoxy acrylate/SiO 2 composites as dental restorative materials. Composites Science and Technology 2008, 68 (13), 2811-2817.
8.Mohammed, N.; Kent, N.; Lynch, R.; Karpukhina, N.; Hill, R.; Anderson, P., Effects of Fluoride on in vitro Enamel Demineralization Analyzed by 19F MAS-NMR. Caries research 2013, 47 (5), 421-428.
9.Craig, R. G.; Powers, J. M., Restorative dental materials. . Mosby Inc. 2002, 11, 237-244.
10. (a) Leung, D.; Spratt, D. A.; Pratten, J.; Gulabivala, K.; Mordan, N. J.; Young, A. M., Chlorhexidine-releasing methacrylate dental composite materials. Biomaterials 2005, 26 (34), 7145-7153; (b) Beyth, N.; Yudovin-Farber, I.; Bahir, R.; Domb, A. J.; Weiss, E. I., Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials 2006, 27 (21), 3995-4002; (c) Weng, Y.; Guo, X.; Gregory, R. L.; Xie, D., Preparation and evaluation of an antibacterial dental cement containing quaternary ammonium salts. Journal of Applied Polymer Science 2011, 122 (4), 2542-2551; (d) Xu, X.; Wang, Y.; Liao, S.; Wen, Z. T.; Fan, Y., Synthesis and characterization of antibacterial dental monomers and composites. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2012, 100 (4), 1151-1162.
11. Powers, J. M.; Wataha, J. C., Dental Materials-: Properties and Manipulation. Elsevier Health Sciences: 2014.
12.Davidson, C., Advances in glass-ionomer cements. Journal of Minimum Intervention in Dentistry 2009, 2 (1), 3-15.
13.Xu, X.; Burgess, J. O., Compressive strength, fluoride release and recharge of fluoride-releasing materials. Biomaterials 2003, 24 (14), 2451-2461.
14.Craig, R.; Power, J.; Wataha, J., Dental material: properties and manipulation 2004. Mosby Comp.
15.Williams, J.; Billington, R.; Pearson, G., A long term study of fluoride release from metal‐containing conventional and resin‐modified glass–ionomer cements. Journal of oral rehabilitation 2001, 28 (1), 41-47.
16.Beyth, N.; Domb, A. J.; Weiss, E. I., An in vitro quantitative antibacterial analysis of amalgam and composite resins. Journal of dentistry 2007, 35 (3), 201-206.
17.Tilbrook, D.; Clarke, R.; Howle, N.; Braden, M., Photocurable epoxy–polyol matrices for use in dental composites I. Biomaterials 2000, 21 (17), 1743-1753.
18.Boyer, D. B.; Chalkley, Y.; Chan, K. C., Correlation between strength of bonding to enamel and mechanical properties of dental composites. Journal of biomedical materials research 1982, 16 (6), 775-783.
19.Schottner, G., Hybrid sol-gel-derived polymers: applications of multifunctional materials. Chemistry of Materials 2001, 13 (10), 3422-3435.
20.Cook, W. D., Photopolymerization kinetics of dimethacrylates using the camphorquinone/amine initiator system. Polymer 1992, 33 (3), 600-609.
21.Yu, Q.; Nauman, S.; Santerre, J.; Zhu, S., UV photopolymerization behavior of dimethacrylate oligomers with camphorquinone/amine initiator system. Journal of applied polymer science 2001, 82 (5), 1107-1117.
22.Ahn, K. D.; Han, D. K.; Lee, S. H.; Lee, C. W., New Aromatic tert‐Amines for Application as Photoinitiator Components in Photocurable Dental Materials. Macromolecular Chemistry and Physics 2003, 204 (13), 1628-1635.
23.Pyszka, I.; Kucybała, Z.; Pączkowski, J., Reinvestigation of the Mechanism of the Free Radical Polymerization Photoinitiation Process by Camphorquinone–Coinitiator Systems: New Results. Macromolecular Chemistry and Physics 2004, 205 (17), 2371-2375.
24.(a) Kim, Y.; Kim, C.; Cho, B.; Son, H.; Um, C.; Kim, O., A new resin matrix for dental composite having low volumetric shrinkage. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2004, 70 (1), 82-90; (b) Kim, J.; Kim, L.; Kim, C.; Cho, B.; Kim, O., Characteristics of novel dental composites containing 2, 2-bis [4-(2-methoxy-3-methacryloyloxy propoxy) phenyl] propane as a base resin. Biomacromolecules 2006, 7 (1), 154-160.
25.Burke, F.; Ray, N.; McConnell, R., Fluoride‐containing restorative materials. International Dental Journal 2006, 56 (1), 33-43.
26.Wiegand, A.; Buchalla, W.; Attin, T., Review on fluoride-releasing restorative materials—fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. dental materials 2007, 23 (3), 343-362.
27.Edgar, W.; Higham, S., Role of saliva in caries models. Advances in dental research 1995, 9 (3), 235-238.
28.Savarino, L.; Cervellati, M.; Stea, S.; Cavedagna, D.; Donati, M.; Pizzoferrato, A.; Visentin, M., In vitro investigation of aluminum and fluoride release from compomers, conventional and resin-modified glass-ionomer cements: a standardized approach. Journal of Biomaterials Science, Polymer Edition 2000, 11 (3), 289-300.
29.Cate, J. t., Review on fluoride, with special emphasis on calcium fluoride mechanisms in caries prevention. European journal of oral sciences 1997, 105 (5), 461-465.
30.Weerasooriya, R.; Wickramarathne, H.; Dharmagunawardhane, H., Surface complexation modeling of fluoride adsorption onto kaolinite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1998, 144 (1), 267-273.
31.Crivello, J., Applications of photoinitiated cationic polymerization in coatings. JCT, Journal of coatings technology 1991, 63 (793), 35-38.
32.Nakagawa, K.; Ninomiya, M.; Okubo, T.; Aoi, N.; Juneja, L. R.; Kim, M.; Yamanaka, K.; Miyazawa, T., Tea catechin supplementation increases antioxidant capacity and prevents phospholipid hydroperoxidation in plasma of humans. Journal of agricultural and food chemistry 1999, 47 (10), 3967-3973.
33.Guo, Q.; Zhao, B.; Li, M.; Shen, S.; Xin, W., Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism 1996, 1304 (3), 210-222.
34.Sato, T.; Miyata, G., The nutraceutical benefit, part iv: garlic. Nutrition 2000, 16 (9), 787-788.
35.Yang, C. S.; Maliakal, P.; Meng, X., Inhibition of Carcinogenesis by Tea*. Annual Review of Pharmacology and Toxicology 2002, 42 (1), 25-54.
36.(a) Gordon, N. C.; Wareham, D. W., Antimicrobial activity of the green tea polyphenol (−)-epigallocatechin-3-gallate (EGCG) against clinical isolates of Stenotrophomonas maltophilia. International journal of antimicrobial agents 2010, 36 (2), 129-131; (b) Gradišar, H.; Pristovšek, P.; Plaper, A.; Jerala, R., Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site. Journal of medicinal chemistry 2007, 50 (2), 264-271.
37.Xu, X.; Zhou, X. D.; Wu, C. D., The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans. Antimicrobial agents and chemotherapy 2011, 55 (3), 1229-1236.
38.Kato, M.; Leite, A.; Hannas, A.; Buzalaf, M., Gels containing MMP inhibitors prevent dental erosion in situ. Journal of dental research 2010, 89 (5), 468-472.
39.Ganss, C.; Schlueter, N.; Hardt, M.; Von Hinckeldey, J.; Klimek, J., Effects of toothbrushing on eroded dentine. European journal of oral sciences 2007, 115 (5), 390-396.
40.Hojati, S. T.; Alaghemand, H.; Hamze, F.; Babaki, F. A.; Rajab-Nia, R.; Rezvani, M. B.; Kaviani, M.; Atai, M., Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dental Materials 2013, 29 (5), 495-505.
41.Phan, T. N.; Buckner, T.; Sheng, J.; Baldeck, J.; Marquis, R., Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms. Oral microbiology and immunology 2004, 19 (1), 31-38.
42.Aydin Sevinç, B.; Hanley, L., Antibacterial activity of dental composites containing zinc oxide nanoparticles. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2010, 94 (1), 22-31.
43.Elsome, A. M.; Hamilton-Miller, J. M.; Brumfitt, W.; Noble, W. C., Antimicrobial activities in vitro and in vivo of transition element complexes containing gold (I) and osmium (VI). Journal of antimicrobial chemotherapy 1996, 37 (5), 911-918.
44.Wright, J. D.; Sommerdijk, N. A., Sol-gel materials: chemistry and applications. Taylor & Francis Books Ltd 2003, 1-8.
45.Brinker, C. J.; Scherer, G. W., Sol-gel Science: the physics and chemistry of sol-gel processing. Academic Press, Inc. 1990, 123.
46.Brinker, C. J.; Scherer, G. W., Sol-gel Science: the physics and chemistry of sol-gel processing. Academic Press, Inc. 1990, 109.
47.Stöber, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. Journal of colloid and interface science 1968, 26 (1), 62-69.
48.Brinker, C. J.; Scherer, G. W., Sol-gel Science: the physics and chemistry of sol-gel processing. Academic Press, Inc. 1990, 102.
49.Park, H. C.; Lee, Y. B.; Lee, S. G.; Lee, C. H.; Kim, J. K.; Hong, S. S.; Park, S. S., Synthesis of beta-alumina powders by microwave heating from solution-derived precipitates. Ceramics international 2005, 31 (2), 293-296.
50.(a) Chandra, A.; Turng, L.-S.; Gopalan, P.; Rowell, R. M.; Gong, S., Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties. Composites science and technology 2008, 68 (3), 768-776; (b) Zhao, H.; Li, R. K., Crystallization, mechanical, and fracture behaviors of spherical alumina‐filled polypropylene nanocomposites. Journal of Polymer Science Part B: Polymer Physics 2005, 43 (24), 3652-3664.
51.Kim, J.-G.; Chung, C.-M., Trifunctional methacrylate monomers and their photocured composites with reduced curing shrinkage, water sorption, and water solubility. Biomaterials 2003, 24 (21), 3845-3851.
52. Cho, J. D.; Ju, H. T.; Hong, J. W., Photocuring kinetics of UV‐initiated free‐radical photopolymerizations with and without silica nanoparticles. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43 (3), 658-670.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top