跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 07:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡瞻宇
研究生(外文):Zhan-Yu Tsai
論文名稱:富勒烯插層效應對於高分子太陽能電池的效率與穩定性之影響
論文名稱(外文):The Influence of Fullerene Intercalation on Efficiency and Stability of Polymer Solar Cells
指導教授:童世煌
指導教授(外文):Shih-Huang Tung
口試委員:詹益慈王建隆孫亞賢
口試委員(外文):Yi-Tsu ChanChien-Lung WangYa-Sen Sun
口試日期:2015-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:78
中文關鍵詞:型態學PBTTT插層效應太陽能電池塊材異質接面穩定性
外文關鍵詞:MorphologyPBTTTIntercalationSolar cellBulk heterojunctionStability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高分子塊材異質有機太陽能電池的轉換效率目前已經超越10%了。然而,對於有機太陽能電池最關鍵的挑戰在於如何達成轉換效率的穩定性。在這篇研究中,我們系統性地探討由高分子PBTTT和三種富勒烯包括[6,6]-C61-苯基丁酸甲酯 (PC61BM)、[6,6]-C71-苯基丁酸甲酯 (PC71BM) 和茚-碳六十的雙加成物 (ICBA) 所組成的混摻系統。高分子PBTTT已經被證實其側鏈間的間隔皆可被這三種富勒烯所插層,但其插層的程度不同,又以PC61BM和PC71BM的插層程度比ICBA要好,而不同的插層程度也會導致不同的光學性質和結構型態。尤其我們發現插層效應可以促使高分子PBTTT的π-π堆積作用和結晶度。
我們利用反式結構的裝置來研究PBTTT/PC71BM元件的光電性質。其中我們發現PBTTT/PC71BM元件的穩定性會比一般使用的混摻系統P3HT/PC61BM還要好,可以歸因於由插層效應造成的穩定互溶相不會隨著時間而傾向相分離。同時我們利用原子力顯微鏡來探討薄膜的表面特徵並發現其表面粗糙度非常小且隨著時間幾乎不會有改變。另外,從小角度X光散射可以確認薄膜中PC71BM的聚集大小並沒有隨著時間有很大的變化。這些結果都指出由插層效應造成的穩定結構可以增加太陽能電池的穩定性,並提供一種設計原則使以高分子為主的太陽能電池有更好的表現。


The power conversion efficiency of polymer bulk heterojunction organic solar cells has exceeded 10 %. However, a key challenge to the organic solar cells is the achievement of power conversion efficiency stability. In this study, we systematically investigated the blends composed of poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) and three fullerenes, including [6,6]-phenyl C61 butyric acid methyl ester (PC61BM), [6,6]-phenyl C71 butyric acid methyl ester (PC71BM), and indene-C60 bisadduct (ICBA). PBTTT has been shown to have a sufficiently large interval between side chains that can be intercalated by all the three fullerenes, but the degree of intercalation is different, in order of PC61BM ~ PC71BM > ICBA, which results in different optical properties and morphology. Particularly, the intercalation can promote the π-π stacking and enhance the crystallinity of PBTTT.
The photovoltaic performance of PBTTT/PC71BM cells fabricated by inverted device structure was studied. We found that the stability of PBTTT/PC71BM cells is much better compared to the common used blend of P3HT/PC61BM. It may be attributed to the stable intermixed phase caused by intercalation that doesn’t tend to phase separate with time. We utilized atomic force microscopy (AFM) to characterize the surface of thin films and found that the surface roughness is very small and nearly unchanged with time. In addition, grazing incidence small-angle X-ray scattering (GISAXS) confirms that the size of PC71BM aggregates in thin films does not significantly change with time. These results suggest that the intercalation can enhance the stability of solar cells due to the stable structure it caused, which provides a design principle for a better performance of polymer-based solar cells.


口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Background of Polymer Solar Cells 4
2.1.1 Introduction 4
2.1.2 Polymer Solar Cell Materials 5
2.2 The Factors Governing Intercalation 7
2.2.1 The relationship between Molecular Mixing and Intercalation 7
2.2.2 PBTTT Blends with Fullerenes 8
2.2.3 PBTTT Blends with Non-Conjugated Small Molecules9
2.2.4 PBTTT Blends with Conjugated Small Molecules 9
2.3 The Properties of BHJ Solar Cells about Intercalation 10
2.3.1 Evidence of Intercalation 10
2.3.2 Efficiency between Intercalation and Non- intercalation 10
2.4 The Stability of Polymer Solar Cells 12
2.4.1 The Normal and Inverted Geometry Devices 12
2.4.2 Critical parameters for Solar Cell Efficiency 13
2.4.3 ISOS Standard Procedures for Lifetime Measurement 15
Chapter 3 Experimental Section 29
3.1 Materials 29
3.2 Samples Preparation 29
3.3 Photovoltaic Devices 29
3.4 Characterization 30
3.4.1 UV-Vis Absorption 30
3.4.2 AFM Measurement 31
3.4.3 Grazing incidence X-ray scattering 31
3.4.4 Optical Microscopy Measurement 31
3.4.5 Differential scanning calorimetry 32
Chapter 4 Results and Discussion 36
4.1 Properties and Structures of the Blends 36
4.1.1 UV-Vis Absorption Measurement 36
4.1.2 AFM and OM Observation for Thin Films 38
4.1.3 Structure and Phase Behavior 39
4.2 Stability of Solar Cell Performance 43
4.3 Time-Dependent Morphology 45
4.3.1 The Root Mean Square Surface Roughness of Thin Films 45
4.3.2 Thermal Stability of Intercalation Structure 46
4.3.3 Grazing Incidence Small-Angle X-ray Scattering of Thin Films 46
Chapter 5 Conclusions 69

LIST OF FIGURES
Figure 2.1 Working mechanism for donor-acceptor heterojunction solar cells. (1) Photoexitation of the donor to generate a Coulomb-correlated electron-hole pair, an exciton. (2) Exciton diffusion to the D-A interface. A distance longer than the maximum diffusion length (max LD) will lead to relaxation of the exciton. (3) Bound exciton dissociation at the D-A interface to form a geminate pair. (4) Free charge transportation and collection at electrodes 16
Figure 2.2 Architecture of a bulk heterojunction photovoltaic device using indium tin oxide (ITO) as the electrode and poly[3,4-(ethylenedioxy)thiophene]-poly(styrenesulfonate) (PEDOT-PSS) as the hole-conducting layer. The enlarged area shows the active layer consisting of a conjugated polymer-[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) composite with a bicontinuous interpenetrating morphology with domain sizes between 10 and 20 nm. (The bottom one is a TEM image, and the top one is a drawing illustration) 17
Figure 2.3 Examples of organic semiconducting materials which are generally used in organic solar cells system 18
Figure 2.4 Fullerene intercalation between the polymer side chains in the PBTTT-C14:PC71BM bimolecular crystal. The PBTTT-C14 polymer and PC71BM fullerene are light and dark gray, respectively 19
Figure 2.5 Chemical structures of the fullerenes tested for intercalation in PBTTT-C14. The numbers in parentheses are the lamellar spacings of the PBTTT-C14:fullerene blends and the lamellar spacings of the blends relative to pure PBTTT-C14, respectively 20
Figure 2.6 Specular XRD patterns of 1:1 PBTTT-C14:fullerene blends and pure PBTTT-C14. The lamellar spacing of each blend is listed in the legend 20
Figure 2.7 Chemical structures of the non-conjugated small molecules tested for intercalation in PBTTT-C14. None of these molecules intercalated in PBTTT-C14. The numbers in parentheses are the lamellar spacings of the PBTTT-C14:fullerene blends and the lamellar spacings of the blends relative to pure PBTTT-C14, respectively 21
Figure 2.8 Specular XRD patterns of 1:1 PBTTT-C14 blends with non-conjugated small molecules and pure PBTTT-C14 (black). The lamellar spacing of each blend is listed in the legend. None of these blends exhibited intercalation 21
Figure 2.9 Chemical structures of the conjugated small molecules tested for intercalation in PBTTT-C14. The numbers in parentheses are the lamellar spacings of the PBTTT-C14:fullerene blends and the lamellar spacings of the blends relative to pure PBTTT-C14, respectively 22
Figure 2.10 Specular XRD patterns of 1:1 PBTTT-C14 blends with conjugated small molecules and pure PBTTT-C14 (black). The lamellar spacing of each blend is listed in the legend 22
Figure 2.11 (a) Molecular structures of PBTTT, PC71BM, and bisPC71BM, (b) possible structures for pure and intercalated PBTTT, and (c) a space-filling ChemDraw model of PBTTT, PC71BM, and bisPC71BM to show their relative sizes. The second side group on bisPC71BM can attach to the fullerene at a number of different locations 23
Figure 2.12 Specular X-ray diffraction patterns for pure PBTTT (black), PBTTT:bisPC71BM (red), and PBTTT:PC71BM (blue) 24
Figure 2.13 Current-voltage measurements for 1:1 (solid lines) and 1:4 (dashed lines) blends of (a) PBTTT:bisPC71BM and (b) PBTTT:PC71BM. The best 1:1 PBTTT:bisPC71BM blends had Jsc) 5.35 mA/cm2, Voc) 0.645 V, FF ) 56%, and η ) 1.94%, and the best 1:4 PBTTT:PC71BM blends had Jsc ) 7.99 mA/cm2, Voc ) 0.565 V, FF ) 55%, and η ) 2.51% 25
Figure 2.14 Photoluminescence spectra, which are normalized by the film thicknesses.
For pure PBTTT (black), 1:1 PBTTT:bisPC71BM (red), and 1:4 PBTTT:PC71BM (blue) 26
Figure 2.15 The normal (left) and inverted (right) device geometries with light entering from the bottom. ETL: electron transport layer; AL: active layer; HTL: hole transport layer; ITO: indium tin oxide electrode 27
Figure 2.16 J–V characteristics for a generic illuminated solar cell 27
Figure 3.1 The chemical structures of (a) PBTTT, (b) PC61BM, (c) PC71BM and (d) ICBA 33
Figure 3.2 Schematic of the inverted-type polymer solar cells where the active layer is sandwiched between ZnO/ITO cathode and Ag-based anode. MoO3 is hole transport layer 34
Figure 3.3 Grazing-incidence small-angle X-ray scattering (GISAXS) is a powerful tool for characterizing large-scale structures in thin films, especially for those with preferred orientation 35
Figure 4.1. Absorption of (a) PBTTT and (b) P3HT in o-DCB solution at different temperature. The position of λmax are shown in the following table…… . 48
Figure 4.2. Absorption of P3HT and PBTTT thin films. The positions of λmax are shown in the following table 49
Figure 4.3. Absorption of (a) P3HT and blends and (b) PBTTT and blends in ratio of 1:1. The positions of λmax are shown in the following table 50
Figure 4.4. Tapping mode AFM height images of blends of PBTTT with PC61BM, PC71BM and ICBA in ratio of 1:1 and 1:4 thin films 51
Figure 4.5. OM pictures of blends of PBTTT with PC61BM, PC71BM and ICBA in ratio of 1:1 and 1:4 thin films 52
Figure 4.6. 2D GIWAXS patterns of (a) P3HT and (b) PBTTT polymers in thin films 53
Figure 4.7. 2D GIWAXS patterns of blends of PBTTT with (a) PC61BM, (b) PC71BM and (c) ICBA in ratio 1:0.5, 1:1, 1:1.5, 1:2 and 1:4 54
Figure 4.8 1D GIWAXS profiles of PBTTT with (a) PC61BM, (b) PC71BM and (c) ICBA in ratio 1:0.5, 1:1, 1:1.5, 1:2 and 1:4 55
Figure 4.9. The in-plane of GISAXS profiles of PBTTT polymer 57
Figure 4.10 The in-plane of GISAXS profiles of PBTTT with (a) PC61BM, (b) PC71BM and (c) ICBA in ratio 1:0.5, 1:1, 1:1.5, 1:2 and 1:4 58
Figure 4.11 The schema of the change with more PC71BM adding to PBTTT. Black and pink represent PBTTT and PC71BM, respectively 59
Figure 4.12 The DSC of PBTTT with (a) PC61BM (b) PC71BM and (c) ICBA in ratio 1:0.5, 1:1.5 and 1:4 compared to pure PBTTT. The heat of the melting, ΔH, is shown in figure and the ΔH attributed to PBTTT is shown in the box 60
Figure 4.13 J-V characteristics of optimized devices made from PBTTT:ICBA=1:4, PBTTT:PC71BM=1:4 and P3HT:PC61BM=1:1. For PBTTT:ICBA=1:4 ( ) : Voc=0.725 V, Jsc=1.41 mA/cm2, FF=39.7 %, PCE=0.41 %. For PBTTT:PC71BM=1:4 ( ) : Voc=0.575 V, Jsc=6.20 mA/cm2, FF=53.1 %, PCE= 1.89 %. For P3HT:PC61BM=1:1 ( ) : Voc=0.600 V, Jsc=8.90 mA/cm2, FF=62.9 %, PCE=3.36 % 61

Figure 4.14 The (a) power conversion efficiency (PCE), (b) short-circuit current (Jsc), (c) open-circuit voltage (Voc) and (d) fill factor (FF) of P3HT:PC61BM=1:1 and PBTTT:PC71BM=1:4 with time. The efficiency of P3HT:PC61BM=1:1 devices decreased from 3.33 % to 1.60 % within 30 days, but the efficiency of PBTTT:PC71BM=1:4 devices did not change a lot even after 35 days 62
Figure 4.15 Energy level diagram of (a) P3HT/PC61BM and (b) PBTTT/ PC71BM with inverted solar cells structure 64
Figure 4.16 The morphology changes of ratio (a) 1:1 of P3HT:PC61BM and (b) 1:4 of PBTTT:PC71BM from Day 1 to Day 30 65
Figure 4.17 The OM pictures of 1:2 ratio of PBTTT:PC71BM at different annealing condition : (a) as-cast, (b) 140oC for 0.5hr, (c) 140oC for 1hr and (d) 140oC for 2hr 66
Figure 4.18 The 2D GIWAXS patterns of 1:2 ratio of PBTTT:PC71BM at different annealing condition : (a) as-cast, (b) 140oC for 0.5hr, (c) 140oC for 1hr and (d) 140oC for 2hr. The spacing of lamellar stacking remains larger than that of pure PBTTT in Figure 4.6 (b) 67
Figure 4.19 The in-plane GISAXS profiles of PBTTT:PC71BM=1:4 of (a) day 1 and (b) day 15. The fitting is shown as solid line through the data 68

LIST OF TABLES
Table 2.1 Overview of different types of test protocols 28
Table 4.1. The q values of (100) and corresponding d-spacing determined by 1D GIWAXS profiles of PBTTT polymer and ratio 1:1 and 1:4 of PBTTT with PC61BM, PC71BM and ICBA 56
Table 4.2. The parameters of open-circuit (Voc), short-circuit current (Jsc), fill factor (FF) and power conversion efficiency (PCE) of (a) P3HT:PC61BM=1:1 and (b) PBTTT:PC71BM=1:4 for solar cell devices within 30 and 35 days 63


1.Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789−91.
2.Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P. Adv. Mater. 2010, 22 (34), 3839−3856.
3.Carsten, D.; Vladimir, D. Rep. Prog. Phys. 2010, 73 (9), 096401
4.Zhang, S.; Ye, L.; Zhao, W.; Yang, B.; Wang, Q.; Hou, J. Sci. China. Chem. 2015, 58, 248−256.
5.Kroon, J. M.; Veenstra, S. C.; Sloof, L. H.; Verhees, W. J. H.; Koetse, M. M.; Sweelssen, J.; Schoo, H. F. M.; Beek, W. J. E; Wienk, M. M.; Janssen, R. A. J.; Yang, X.; Loos, J.; Mihailetchi, V. D.; Blom, P. W. M.; Knol, J.; Hummelen, J. C. Abst. Eur. Sol. Energy Conf. 2005.
6.Mayer, A. C.; Toney, M. F.; Scully, S. R.; Rivnay, J.; Brabec, C. J.; Scharber, M.; Koppe, M.; Heeney, M.; McCulloch, I.; McGehee, M. D. Adv. Funct. Mater. 2009, 19 (8), 1173–1179.
7.Cates, N. C.; Gysel, R.; Beiley, Z.; Miller, C. E.; Toney, M. F.; Heeney, M.; McCulloch, I.; McGehee, M. D. Nano Lett. 2009, 9, 4153–4157.
8.Lenes, M.; Wetzelaer, G.-J. A. H.; Kooistra, F. B.; Veenstra, S. C.; Hummelen, J. C.; Blom, P. W. M. Adv. Mater. 2008, 20 (11), 2116−2119.
9.He, Y.; Li, Y. Phys. Chem. Chem. Phys. 2011, 13 (6), 1970−1983.
10.Lenes, M.; Shelton, S. W.; Sieval, A. B.; Kronholm, D. F.; Hummelen, J. C.; Blom, P. W. M. Adv. Funct. Mater. 2009, 19 (18), 3002−3007.
11.Choi, J. H.; Son, K.-I.; Kim, T.; Kim, K.; Ohkubo, K.; Fukuzumi, S. J. Mater. Chem. 2010, 20 (3), 475−482.
12.Frost, J. M.; Faist, M. A.; Nelson, J. Adv. Mater. 2010, 22 (43), 4881−4884.
13.Faist, M. A.; Keivanidis, P. E.; Foster, S.; Wöbkenberg, P. H.; Anthopoulos, T. D.; Bradley, D. D. C.; Durrant, J. R.; Nelson, J. J. Polym. Sci., Part B: Polym. Phys. 2011, 49 (1), 45−51.
14.Darin Laird, P. Plextronics, Inc.: Pittsburgh, PA. Personal Communication, 2011.
15.Laird, D. W.; Stegamat, R.; Daadi, M.; Richter, H.; Vejins, V.; Scott, L.; Lada, T. A. Organic Photovoltaic Devices Comprising Fullerenes and Derivatives Thereof. U.S. Patent no. 2010/0132782, June 3, 2010.
16.Zhao, G.; He, Y.; Li, Y. Adv. Mater. 2010, 22 (39), 4355−4358.
17.He, Y.; Chen, H.-Y.; Hou, J.; Li, Y. J. Am. Chem. Soc. 2010, 132 (4), 1377−1382.
18.Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Prog. Photovolt: Res. Appl. 2013, 21, (5), 827-837.
19.Ameri, T.; Khoram, P.; Min, J.; Brabec, C. J., Adv. Mater. 2013, 25, (31), 4245-4266.
20.Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15.
21.Günes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324.
22.Wöhrle, D.; Meissner, D. Adv. Mater. 1991, 3, 129.
23.Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.
24.Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Appl. Phys. Lett. 1996, 68, 3120.
25.Theander, M.; Yartsev, A.; Zigmantas, D.; Sundstrom, V.; Mammo, W.; Andersson, M. R.; Inganas, O. Phys. Rev. B 2000, 61, 12957.
26.Haugeneder, A.; Neges, M.; Kallinger, C.; Spirkl, W.; Lemmer, U.; Feldmann, J.; Scherf, U.; Harth, E.; Gugel, A.; Mullen, K. Phys. Rev. B 1999, 59, 15346.
27.Stubinger, T.; Brutting, W. J. Appl. Phys. 2001, 90, 3632.
28.Markov, D. E.; Amsterdam, E.; Blom, P. W. M.; Sieval, A. B.; Hummelen, J. C. J. Phys. Chem. A 2005, 109, 5266.
29.Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.
30.Hoppe, H.; Sariciftci, N. S. J. Mater. Chem. 2004, 19, 1924.
31.Handbook of ConductiVe Molecules and Polymers; Nalwa, H. S., Ed.; John Wiley & Sons Ltd.: Chichester, 1997; Vols. 1-4.
32.Maenning, B.; Drechssel, J.; Gebeyehu, D.; Simon, P.; Kozlowski, F.; Werner, A.; Li, F.; Gundmann, S.; Sonntag, S.; Koch, M.; Leo, K.; Pfeiffer, M.; Hoppe, H.; Meissner, D.; Sariciftci, S.; Riedel, I.; Dyakonov, V.; Parisi, J. J. Appl. Phys. A 2004, 79, 1.
33.Drechsel, J.; Maning, B.; Kozlowski, F.; Gebeyehu, D.; Werner, A.; Koch, M.; Leo, K.; Pfeiffer, M. Thin Solid Films 2004, 451-452, 515.
34.Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., Science 1992, 258, (5087), 1474-1476.
35.Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Science 1995, 270, (5243), 1789-1791.
36.Hummelen, J. C.; Knight, B. W.; Lepeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L., J. Org. Chem. 1995, 60, (3), 532-538.
37.Park, S. H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J., Nature Photonics 2009, 3, (5), 297-302.
38.Bull, T. A.; Pingree, L. S. C.; Jenekhe, S. A.; Ginger, D. S.; Luscombe, C. K., ACS Nano 2009, 3, (3), 627-636.
39.Mihailetchi, V. D.; Xie, H.; De Boer, B.; Koster, L. J. A.; Blom, P. W. M., Adv. Funct. Mater. 2006, 16, (5), 699-708.
40.Chen, F. C.; Ko, C. J.; Wu, J. L.; Chen, W. C., Solar Energy Materials and Solar Cells 2010, 94, (12), 2426-2430.
41.Kim, Y.; Ballantyne, A. M.; Nelson, J.; Bradley, D. D. C., Organic Electronics 2009, 10, (1), 205-209.
42.Schilinsky, P.; Asawapirom, U.; Scherf, U.; Biele, M.; Brabec, C. J., Chem. Mater. 2005, 17, (8), 2175-2180.
43.Chang, L.; Lademann, H. W. A.; Bonekamp, J. B.; Meerholz, K.; Moulé, A. J., Adv. Funct. Mater. 2011, 21, (10), 1779-1787.
44.W. Yin , M. Dadmun , ACS Nano 2011, 5 , 4756 .
45.D. Chen , A. Nakahara , D. Wei , D. Nordlund , T. P. Russell , Nano Lett. 2011, 11, 561.
46.B. A. Collins , E. Gann , L. Guignard , X. He , C. R. McNeill , H. Ade , J. Phys. Chem. Lett. 2010, 1, 3160.
47.N. D. Treat , M. A. Brady , G. Smith , M. F. Toney , E. J. Kramer , C. J. Hawker , M. L. Chabinyc , Adv. Energy Mater. 2011, 1 , 82 .
48.D. R. Kozub , K. Vakhshouri , L. M. Orme , C. Wang , A. Hexemer , E. D. Gomez , Macromolecules 2011, 44 , 5722 .
49.M. Pfannmöller , H. Flügge , G. Benner , I. Wacker , C. Sommer , M. Hanselmann , S. Schmale , H. Schmidt , F. A. Hamprecht , T. Rabe , W. Kowalsky , R. R. Schröder , Nano Lett. 2011, 11 , 3099 ..
50.W. L. Rance , A. J. Ferguson , T. McCarthy-Ward , M. Heeney , D. S. Ginley , D. C. Olson , G. Rumbles , N. Kopidakis , ACS Nano 2011, 5 , 5635 .
51.T. J. Savenije , W. J. Grzegorczyk , M. Heeney , S. Tierney , I. McCulloch , L. D. A. Siebbeles , J. Phys. Chem. C 2010, 114 , 15116 .
52.A. Baumann , T. J. Savenije , D. H. K. Murthy , M. Heeney , V. Dyakonov , C. Deibel , Adv. Funct. Mater. 2011, 21 , 1687 .
53.N. C. Miller , R. Gysel , C. E. Miller , E. Verploegen , Z. Beiley , M. Heeney , I. McCulloch , Z. Bao , M. F. Toney , M. D. McGehee , J. Polym. Sci., Part B: Polym. Phys. 2011, 49 , 499 .
54.N. C. Miller , E. Cho , M. J. N. Junk , R. Gysel , C. Risko , D. Kim , S. Sweetnam , C. E. Miller , L. J. Richter , R. J. Kline , M. Heeney , I. McCulloch , A. Ammassian , D. Acevedo-Feliz , C. Knox , M. R. Hansen , D. Dudenko , B. E. Chmelka , M. F. Toney , J.-L. Brédas , M. D. McGehee , Adv. Mater. 2012, DOI: adma.201202293.
55.F. C. Jamieson , E. B. Domingo , T. McCarthy-Ward , M. Heeney , N. Stingelin , J. R. Durrant , Chem. Sci. 2012, 3 , 485 .
56.C. Müller , J. Bergqvist , K. Vandewal , K. Tvingstedt , A. S. Anselmo , R. Magnusson , M. I. Alonso , E. Moons , H. Arwin , M. Campoy-Quiles , O. Inganas , J. Mater. Chem. 2011, 21, 10676 .
57.N. C. Cates , R. Gysel , J. E. P. Dahl , A. Sellinger , M. D. McGehee , Chem. Mater. 2010, 22, 3543 .
58.R. B. Ross , C. M. Cardona , D. M. Guldi , S. G. Sankaranarayanan , M. O. Reese , N. Kopidakis , J. Peet , B. Walker , G. C. Bazan , E. VanKeuren , B. C. Holloway , M. Drees , Nat. Mater. 2009, 8 , 208 .
59.S. A. Backer , K. Sivula , D. F. Kavulak , J. M. J. Fréchet , Chem. Mater. 2007, 19 , 2927 .
60.N. C. Miller , S. Sweetnam , E. T. Hoke , R. Gysel , C. E. Miller , J. A. Bartelt , X. Xie , M. F. Toney , M. D. McGehee , Nano Lett. 2012, 12, 1566-1570.
61.Z. E. Ooi , T. L. Tam , R. Y. C. Shin , Z. K. Chen , T. Kietzke , A. Sellinger , M. Baumgarten , K. Mullen , J. C. de Mello , J. Mater. Chem. 2008, 18 .
62.C. H. Woo , T. W. Holcombe , D. A. Unruh , A. Sellinger , J. M. J. Fréchet , Chem. Mater. 2010, 22 , 1673 .
63.Li, G.; Chu, C.-W.; Shrotriya, V.; Huang, J.; Yang, Y., Appl. Phys. Lett. 2006, 88, (25), -.
64.Glatthaar, M.; Niggemann, M.; Zimmermann, B.; Lewer, P.; Riede, M.; Hinsch, A.; Luther, J., Thin Solid Films 2005, 491, (1–2), 298-300.
65.K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, Appl. Phys. Lett. 2002, 80, 2788.
66.M. P. de Jong, L. J. van Ijzendoorn, and M. J. A. de Voigt, Appl. Phys. Lett. 2000, 77, 2255.
67.H. L. Yip, S. K. Hau, N. S. Baek, and A. K. Y. Jen, Appl. Phys. Lett. 2008, 92, 193313.
68.Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J., Adv. Mater. 2006, 18, (6), 789-794.
69.Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C., Adv. Funct. Mater. 2001, 11, (5), 374-380.
70.Liu, J.; Shi, Y.; Yang, Y., Adv. Funct. Mater. 2001, 11, (6), 420-424.
71.van Duren, J. K. J.; Yang, X.; Loos, J.; Bulle-Lieuwma, C. W. T.; Sieval, A. B.; Hummelen, J. C.; Janssen, R. A. J., Adv. Funct. Mater. 2004, 14, (5), 425-434.
72.Hoppe, H.; Glatzel, T.; Niggemann, M.; Schwinger, W.; Schaeffler, F.; Hinsch, A.; Lux-Steiner, M. C.; Sariciftci, N. S., Thin Solid Films 2006, 511–512, (0), 587-592.
73.Hoppe, H.; Niggemann, M.; Winder, C.; Kraut, J.; Hiesgen, R.; Hinsch, A.; Meissner, D.; Sariciftci, N. S., Adv. Funct. Mater. 2004, 14, (10), 1005-1011.
74.Gebeyehu, D.; Brabec, C. J.; Padinger, F.; Fromherz, T.; Hummelen, J. C.; Badt, D.; Schindler, H.; Sariciftci, N. S., Synthetic Metals 2001, 118, (1–3), 1-9.
75.Martens, T.; D’Haen, J.; Munters, T.; Beelen, Z.; Goris, L.; Manca, J.; D’Olieslaeger, M.; Vanderzande, D.; De Schepper, L.; Andriessen, R., Synthetic Metals 2003, 138, (1–2), 243-247.
76.Gadisa, A.; Svensson, M.; Andersson, M. R.; Inganäs, O., Appl. Phys. Lett. 2004, 84, (9), 1609-1611.
77.Arias, A. C.; MacKenzie, J. D.; Stevenson, R.; Halls, J. J. M.; Inbasekaran, M.; Woo, E. P.; Richards, D.; Friend, R. H., Macromolecules 2001, 34, (17), 6005-6013.
78.Reese, M. O.; Gevorgyan, S. A.; Jrgensen, M.; Bundgaard, E.; Kurtz, S. R.; Ginley, D. S.; Olson, D. C.; Lloyd, M. T.; Morvillo, P.; Katz, E. A.; Elschner, A.; Haillant, O.; Currier, T. R.; Shrotriya, V.; Hermenau, M.; Riede, M.; R. Kirov, K.; Trimmel, G.; Rath, T.; Inganäs, O.; Zhang, F.; Andersson, M.; Tvingstedt, K.; Lira-Cantu, M.; Laird, D.; McGuiness, C.; Gowrisanker, S.; Pannone, M.; Xiao, M.; Hauch, J.; Steim, R.; DeLongchamp, D. M.; Rösch, R.; Hoppe, H.; Espinosa, N.; Urbina, A.; Yaman-Uzunoglu, G.; Bonekamp, J.-B.; van Breemen, A. J. J. M.; Girotto, C.; Voroshazi, E.; Krebs, F. C., Solar Energy Materials and Solar Cells 2011, 95, (5), 1253-1267.
79.D. Chirvase, J. Parisi, J.C. Hummelen, V. Dyakonov, Nanotechnology 2004, 15, 1317.
80.Yang, X.; Uddin, A., Renewable and Sustainable Energy Reviews 2014, 30, 324-336.
81.Woo, C. H.; Thompson, B. C.; Kim, B. J.; Toney, M. F.; Fréchet, J. M. J., J. Am. Chem. Soc. 2008, 130, (48), 16324-16329.
82.Dante, M.; Peet, J.; Nguyen, T. Q., J. Phys. Chem. C 2008, 112, (18), 7241-7249.
83.Chiu, M.-Y.; Jeng, U. S.; Su, C.-H.; Liang, K. S.; Wei, K.-H., Adv. Mater. 2008, 20, (13), 2573-2578.
84.Chiu, M.-Y.; Jeng, U. S.; Su, M.-S.; Wei, K.-H., Macromolecules 2009, 43, (1), 428-432.
85.Panov, V. P.; Nagaraj, M.; Vij, J. K.; Panarin, Y. P.; Kohlmeier, A.; Tamba, M. G.; Lewis, R. A.; Mehl, G. H., Phys. Rev. Lett. 2010, 105, (16), 167801.
86.Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Chem. Rev. 2009, 109, 5868-5923.
87.Miller, N. C.; Cho, E.; Gysel, R.; Risko, C.; Coropceanu, V.; Miller, C. E.; Sweetnam, S.; Sellinger, A.; Heeney, M.; McCulloch, I.; Bredas, J. L.; Toney, M. F.; McGehee, M. D. Adv. Energy Mater. 2012, 2 (10), 1208−1217.
88.Reese, M. O.; Gevorgyan, S. A.; Jrgensen, M.; Bundgaard, E.; Kurtz, S. R.; Ginley, D. S.; Olson, D. C.; Lloyd, M. T.; Morvillo, P.; Katz, E. A.; et al. Sol. Energy Mater. Sol. Cells 2011, 95, 1253−1267.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top