跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 01:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林東輝
研究生(外文):Dong-Huei Lin
論文名稱:電滲透流對電荷可調節之錐型奈米孔道中離子傳輸行為之影響
論文名稱(外文):Influence of Electroosmotic Flow on the Ionic Current Rectification in a pH-Regulated, Conical Nanopore
指導教授:徐治平徐治平引用關係
口試委員:曾琇瑱郭勇志張有義葉禮賢
口試日期:2015-06-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:71
中文關鍵詞:pH值調節錐型奈米孔道電滲透流離子電流整合效應離子電流整合因子
外文關鍵詞:pH-regulatedconical nanoporeelectroosmotic flowionic current rectificationcurrent rectification ratio
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於生醫材料的蓬勃發展,奈米裝置用於DNA序鏈鑑測及蛋白質膜分離受到高度地關注。基於此,吾人以理論分析來探討藉由調控電解質液中pH值對離子電流整合效應的影響。不同於以往研究中大多忽略電滲透流對於離子電流整合效應的影響,吾人結合Poisson、Nernst-Planck、與Navier-Stokes方程式探討電滲透流在貼近真實生物膜上孔道的帶電方式下的行為。藉由調整pH值、離子濃度及施加的電壓,吾人進而探討仿生細胞通道內的離子電流整合效應影響。數值模擬的結果顯示,電滲透流在適當的離子濃度、pH值遠離等電位點、施加高電壓下時會有顯著地影響。在與以往研究中忽略電滲透流效應的結果比較下,偏差值之數量級可達100%。此外,無論在示性或示量上,考慮電滲透流皆造成與以往研究有很大的不同,此研究可以提供給往後實驗者在實驗裝置設計上的參數調整參考。

Due to the rapid progress in biomedical materials in the past decades, the application of nano devices in DNA sequencing and membrane separation of proteins has drawen the attention of researches in various fields. Inspired by this, we analyze theoretically the influence of solution pH on the ion current rectification (ICR) behavior in a pH-regulated nanopore. Different from those in previous studies, where the effect of electroosmotic flow (EOF) is neglected, we solve simultaneously the Poisson, Nernst-Planck, and Navier-Stokes equations describing the behavior of a biomembrane, so the problem considered is closer to reality. Through adjusting the solution pH, ionic concentration, and the applied electric potential bias, we examine the ICR phenomenon under various conditions. The results of numerical simulation reveal that the influence of the EOF effect on ICR can be significant if the ionic concentration takes a medium high value, the solution pH is far from the isoelectric point, and the applied electric potential bias high. We show that the conventional result, where EOF is neglected, the percentage deviation in the rectification factor (RF) can be on the order of 100%. In addition, EOF is capable of influencing both qualitatively and quantitatively RF. Our analysis provides valuable information for designing experimental devices and selecting relevant parameters.

誌謝………………………………………………………………………………………i
中文摘要………………………………………………………………………………...ii
ABSTRACT…………………………………………………………………………….iii
CONTENTS……...……………………………………………………………………..iv
LIST OF FIGURES……………………………………………………………………...v
Influence of Electroosmotic Flow on the Ionic Current Rectification in a
pH-Regulated, Conical nanopore……………………………………………………...1
Additional Influence of double-layer polarization and chemiosmosis on the
Work diffusiophoresis of a non-spherical polyelectrolyte…………….…….33

[1] M. Wanunu, W. Morrison, Y. Rabin, A. Y. Grosberg, A. Meller, Nat. Nanotechnol. 5 (2010) 160-165.
[2] B. M. Venkatesan, R. Bashir, Nat. Nanotechnol. 6 (2011) 615-624.
[3] M. Tsutsui, S. Hongo, Y. H. He, M. Taniguchi, N. Gemma, T. Kawai, ACS Nano 6 (2012) 3499-3505.
[4] S. W. Kowalczyk, D. B. Wells, A. Aksimentiev, C. Dekker, Nano Lett. 12 (2012) 1038-1044.
[5] C. Plesa, S. W. Kowalczyk, R. Zinsmeester, A. Y. Grosberg, Y. Rabin, C. Dekker, Nano Lett. 13 (2013) 658-663.
[6] T. K. Rostovtseva, C. L. Bashford, A. A. Lev, C. A. Pasternak, J. Membr. Biol. 141 (1994) 83-90.
[7] Y. E. Korchev, C. L. Bashford, G. M. Alder, P. Y. Apel, D. T. Edmonds, A. A. Lev, K. Nandi, A. V. Zima, C. A. Pasternak, FASEB J. 11 (1997) 600-608.
[8] L. T. Sexton, L. P. Horne, C. R. Martin, Mol. BioSyst. 3 (2007) 667-685.
[9] C. R. Martin, Z. S. Siwy, Science 317 (2007) 331-332.
[10] S. Howorka, Z. Siwy, Chem. Soc. Rev. 38 (2009) 2360-2384.
[11] I. Vlassiouk, S. Smirnov, Z. S. Siwy, Nano Lett. 8 (2008) 1978-1985.
[12] E. Garcia-Gimenez, A. Alcaraz, V. M. Aguilella, P. J. Ramirez, Membr. Sci. 331 (2009) 137–142.
[13] J. Cervera, B. Schiedt, R. Neumann, S. Mafe, P. Ramirez, J. Chem. Phys. 124 (2006) 104706.
[14] D. Constantin, Z. S. Siwy, Phys. Rev. E 76 (2007) 041202.
[15] Z. S. Siwy, AdV. Funct. Mater. 16 (2006) 735-746.
[16] S. Qian, S. W. Joo, Langmuir 24 (2008) 4778-4784.
[17] S. Qian, S. W.Joo, W. Hou, X. Zhao, Langmuir 24 (2008) 5332-5340.
[18] Z. S. Siwy, Y. Gu, H. A. Spohr, D. Baur, A. Wolf-Reber, R. Spohr, P. Apel, Y. E. Korchev, Europhys. Lett. 60 (2002) 349-355.
[19] D. Woermann, Phys. Chem. Chem. Phys. 5 (2003) 1853-1858.
[20] D. Woermann, Phys. Chem. Chem. Phys. 6 (2004) 3130-3132.
[21] J. Y. Jung, P. Joshi, L. Petrossian, T. J. Thornton, J. D. Posner, Anal. Chem. 81 (2009) 3128-3133.
[22] L. J. Cheng, L. J. Guo, Nano Lett. 7 (2007) 3165-3171.
[23] L. H. Yeh, M. Zhang, S. Qian, J. P. Hsu, S. Tseng, J. Phys. Chem. C 116 (2012) 8672-8677.
[24] C. Kubeil, A. Bund, J. Phys. Chem. C 115 (2011) 7866-7873.
[25] Y. Ai, M. K. Zhang, S. W.Joo, M. A. Cheney, S. Qian, J. Phys. Chem. C 114 (2010) 3883-3890.
[26] Y. Ai, J. Liu, B. K. Zhang, S. Qian, Sens. Actuators B 157 (2011) 742-751.
[27] B. Zhang, Y. Ai, J. Liu, S. W. Joo, S. Qian, J. Phys. Chem. C 115 (2011) 24951-24959.
[28] L. H. Yeh, M. Zhang, N. Hu, S. W. Joo, S. Qian, J. P. Hsu, Nanoscale 4 (2012) 5169-5177.
[29] H. Daiguji, P. D. Yang, A. Majumdar, Nano Lett. 4 (2004) 137-142.
[30] L. J. Cheng, L. J. Guo, Nano Lett. 7 (2007) 3165-3171.
[31] I. Vlassiouk, S. Smirnov, Z. Siwy, Nano Lett. 8 (2008) 1978-1985.
[32] H. S. White, A. Bund, Langmuir 24 (2008) 2212-2218.
[33] L. H. Yeh, M. Zhang, S. Qian, Anal. Chem. 85 (2013) 7527-7534.
[34] M. Ali, P. Ramirez, S. Mafé, R. Neumann, W. Ensinger, ACS Nano 3 (2009) 603-608.
[35] W. J. Lan, D. A. Holden, H. S. White, J. Am. Chem. Soc. 133 (2011) 13300-13303.
[36] C. Kubeil, A. Bund, J. Phys. Chem. C 115 (2011) 7866-7873.
[37] K. P. Singh, M. Kumar, J. Phys. Chem. C 115 (2011) 22917-22924.
[38] K. P. Singh, M. Kumar, Lab Chip 12 (2012) 1332-1339.
[39] Y. H. He, M. Tsutsui, C. Fan, M. Taniguchi, T. Kawai, ACS Nano 5 (2011) 5509-5518.
[40] M. B. Andersen, H. Bruus, J. P. Bardhan, S. Pennathur, J. Colloid Interface Sci. 360 (2011) 262-271.
[41] M. Wang, Q. J. Kang, E. Ben-Naim, Anal. Chim. Acta 664 (2010) 158-164.
[42] L. H. Yeh, M. K. Zhang, S. Qian, J. P. Hsu, Nanoscale 4 (2012) 2685-2693.
[43] L. H. Yeh, M. Zhang, N. Hu, S. W. Joo, S. Qian, J. P. Hsu, Nanoscale 4 (2012) 5169-5177.
[44] L. Petrossian, S.J. Wilk, S.M. Goodnick, T.J. Thornton, J. Phys. Conf. Ser. 109 (2008) 012028.
[45] D. G. Haywood, Z. D. Harms, S. C. Jacobson, Anal. Chem. 86 (2014) 11174-11180.
[46]S. Tseng, Y. H. Tai, J. P. Hsu, Microfluidics Nanofluidics 15 (2013) 847-857.

Additional Work:
[1] P. Goldsmith, H.J. Delafield, L.C. Cox, Q. J. R. Meteor. Soc. 89 (1963) 43-61.
[2] A. Meisen, A.J. Bobkowic, N.E. Cooke, E.J. Farkas, Can. J. Chem. Eng. 49 (1971) 449-457.
[3] J.C. Carstens, J.J. Martin, J. Atmos. Sci. 39 (1982) 1124-1129.
[4] S.P. Bakanov, V.V. Vysotskii, Colloid J. USSR 53 (1991) 663-670.
[5] A. Zoulalian, T. Albiol, Can. J. Chem. Eng. 76 (1998) 799-805.
[6] S.S. Voyutskii, Y.I. Markin, V.M. Gorchakova, V.E. Gul, Zh. Fiz. Khim. 37 (1963) 2027-2032.
[7] A.A. Korotkova, B.V. Deryagin, Colloid J. USSR 53 (1991) 719-722. [8] G.L. Dvornichenko, Y.V. Nizhnik, T.V. Slavikovskii, L.V. Nikolaichuk, Colloid J. Russ. Acad. Sci. 55 (1993) 36-39.
[9] J.L. Munoz-Cobo, J. Pena, L.E. Herranz, A. Perez-Navarro, Nucl. Eng. Des. 235 (2005) 1225-1237.
[10] J. Palacci, B. Abecassis, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Phys. Rev. Lett. 104 (2010) 138302.
[11] T.R. Kline, A. Sen, Langmuir 22 (2006) 7124-7127.
[12] A. Sen, M. Ibele, Y. Hong, D. Velegol, Faraday Discuss. 143 (2009) 15-27.
[13] N. Chaturvedi, Y. Hong, A. Sen, D. Velegol, Langmuir 26 (2010) 6308-6313.
[14] W. Liu, R. He, H. Zhu, H. Hu, M. Li, X.Z. Zhao, Appl. Phys. Lett. 95 (2010) 053114.
[15] S.Y. Lee, S.E. Yalcin, S.W. Joo, A. Sharma, O. Baysal, S. Qian, Microgravity Sci. Technol. 22 (2010) 329-338.
[16] S.E. Yalcin, S.Y. Lee, S.W. Joo, O. Baysal, S. Qian, J. Phys. Chem. B 114 (2010) 4082-4093.
[17] J.P. Hsu, W.L. Hsu, Z.S. Chen, Langmuir 25 (2009) 1772-1784.
[18] J.P. Hsu, K.L. Liu, W.L. Hsu, L.H. Yeh, S. Tseng, J. Phys. Chem. B 114 (2010) 2766-2778.
[19] J.P. Ebel, J.L. Anderson, D.C. Prieve, Langmuir 4 (1988) 396-406.
[20] D.C. Prieve, R.J. Roman, J. Chem. Soc. Faraday Trans. 2 83 (1987) 1287-1306.
[21] S.S. Dukhin, B.V. Deryagin, Surface and Colloid Science, Vol. 7, Wiley, New York, 1974.
[22] D.C. Prieve, J.L. Anderson, J.P. Ebel, M.E. Lowell, J. Fluid Mech. 148 (1984) 247-269.
[23] P.O. Staffeld, J.A. Quinn, J. Colloid Interface Sci. 130 (1989) 69-87.
[24] L.H. Yeh, J.P. Hsu, Soft Matter 7 (2011) 396-411.
[25] J.Th.G. Overbeek, D. Stigter, Recl. Trav. Chim. Pays-Bas 75 (1956) 543-554.
[26] I. Noda, M. Nagasawa, M. Ota, J. Am. Chem. Soc. 86 (1964) 5075-5079.
[27] N. Imai, K. Iwasa, Isr. J. Chem. 11 (1973) 223-233.
[28] J.L. Viovy, Rev. Mod. Phys. 72 (2000) 813-872.
[29] A.V. Dobrynin, M. Rubinstein, Prog. Polym. Sci. 30 (2005) 1049-1118.
[30] S.K. Tripathy, J. Kumar, H.S. Nalwa, Handbook of polyelectrolytes and their applications, American Scientific Publishers, Los Angeles, 2002.
[31] F. Oosawa, Polyelectrolytes, Marcel Dekker, New York, 1971.
[32] K.L. Liu, J.P. Hsu, W.L. Hsu, L.H. Yeh, S. Theng, Electrophoresis 33 (2012) 1068-1078.
[33] V.B. Teif, K. Bohinc, Prog. Biophys. Mol. Biol. 105 (2011) 208-222.
[34] G.S. Manning, Biophys. Chem. 101 (2002) 461-473.
[35] K. Wagner, D. Harries, S. May, V. Kahl, J.O. Radler, A. Ben-Shaul, Langmuir 16 (2000) 303-306.
[36] S.J. Chen, Annu. Rev. Biophys. 37 (2008) 197-214.
[37] D.E. Draper, D. Grilley, A.M. Soto, Annu. Rev. Biophys. Biomol. Struct. 34 (2005) 221-243.
[38] J.L. Li, M. Gershow, D. Stein, E. Brandin, J.A. Golovchenko, Nat. Mater. 2 (2003) 611-615.
[39] A.J. Storm, C. Storm, J.H. Chen, H. Zandbergen, J.F. Joanny, C. Dekker, Nano Lett. 5 (2005) 1193-1197.
[40] J. Clarke, H.C. Wu, L. Jayasinghe, A. Patel, S. Reid, H. Bayley, Nat. Nanotechnol. 4 (2009) 265-270.
[41] M. Wanunu, J. Sutin, A. Meller, Nano Lett. 9 (2009) 3498-3502.
[42] A. Singer, M. Wanunu, W. Morrison, H. Kuhn, M. Frank-Kamenetskii, A. Meller, Nano Lett. 10 (2010) 738-742.
[43] T. Chou, J. Chem. Phys. 131 (2009) 034703.
[44] M. Wanunu, W. Morrison, Y. Rabin, A.Y. Grosberg, A. Meller, Nat. Nanotechnol. 5 (2010) 160-165.
[45] L.H. Yeh, K.L. Liu, J.P. Hsu, J. Phys. Chem. C 116 (2012) 367-373.
[46] B.V. Deryagin, S.S. Dukhin, A.A. Korotkova, Kolloidn. Zh. 23 (1961) 53-58.
[47] P.O. Staffeld, J.A. Quinn, J. Colloid Interface Sci. 130 (1989) 88-100.
[48] J.P. Hsu, K.L. Liu, S. Tseng, J. Phys. Chem. C 117 (2013) 9469-9476.
[49] J.P. Hsu, J. Lou, Y.Y. He, E. Lee, J. Phys. Chem. B 111 (2007), 2533-2539.
[50] Y. Pawar, Y.E. Solomentsev, J.L. Anderson, J. Colloid Interface Sci. 155 (1993) 488-498.
[51] X.G. Zhang, W.L. Hsu, J.P. Hsu, S. Tseng, J. Phys. Chem. B 113 (2009) 8646-8656.
[52] T.W. Lo, C. Hsu, K.L. Liu, J.P. Hsu, S. Tseng, J. Phys. Chem. C 117 (2013) 19226-19233.
[53] Y.K. Wei, H.J. Keh, J. Colloid Interface Sci. 269 (2004) 240-250.
[54] B. Chun, A. J. Ladd, J. Colloid Interface Sci. 274 (2004) 687-694.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 潘世尊(1997)。Rogers人本教育理論與建構主義教學模式二之發展:國小數學教學的行動研究。應用心理研究,8,209-238。
2. 沈中偉(1992),蓋聶教學理論在教學設計上之應用與啟示。視聽教育雙月刊,33(4),28-37。
3. 葉崗(2000)。文體意識與文學史體例。中國文哲研究集刊,17,217-236。
4. 王宣惠、洪儷瑜、辜玉旻(2012)。小學中年級學童詞素覺識與閱讀理解之相關研究。當代教育研究季刊,20(1),123-164。
5. 方金雅、邱上真、陳密桃、黃秀霜(2002)。國小學童後設語言之研究。教育學刊,19,1-26。
6. 黃琬婷(2012)。交互教學法對國小低年級學童閱讀理解能力與閱讀動機影響之研究。教育研究論壇,3(2),201-224。
7. 陳滿銘(2012)。形象、邏輯思維在篇章結構的互動關係。國文天地,325,126-134。
8. 陳嘉皇(2013)。 國小六年級學生運用一般化基模進行圖形規律問題解題之研究。教育科學研究期刊,58(1),59-90。
9. 傅粹馨 (1998)。影響機差相關係數與α信度係數之因素。教育學刊,14,193-206。
10. 張清濱 (2013)。多元評量:理念及其應用。新北市教育,8,15-19。
11. 羅漪文(2012)。漢魏晉誄體文的功能與篇章結構—以抒哀脈絡為主的討論。東華漢學,16,115-148。
12. 陳佳君(2012)。袁宏道〈晚遊六橋待月記〉篇章結構之特色。國文天地,322,33-39。
13. 袁愛玲(2013)。數位閱讀教學對國小高年級學童閱讀理解影響之研究。教育研究論壇,4(2),207-223。
 
無相關點閱論文