跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 17:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭雯方
研究生(外文):Man-Fong Cheng
論文名稱:考古陶器紋飾辨識-以Lapita文化為例
論文名稱(外文):Identifying Lapita Motifs Based on Pattern Recognition Technology
指導教授:丁肇隆丁肇隆引用關係
口試委員:呂承諭張信宏
口試日期:2015-06-12
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:50
中文關鍵詞:科技考古考古紋飾辨識Lapita 裝飾單元分類Lapita文化考古碎片拼接
外文關鍵詞:Archaeological ScienceArchaeological Pattern RecognitionLapita Unit ClassificationLapita CultureArchaeological Fragment Reconstruction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
科技考古為透過資訊科技輔助考古的領域,在近年來此領域日趨重視,也吸引學者們紛紛投入。過去在考古陶片的研究上,多以碎片拼接為主,然而考古陶片的紋理具有文化意義,為考古分析工作之重點,以資訊技術協助紋飾分析的流程,除可提升元數據(metadata)分析的速度,亦能在考古碎片拼接中,加入紋路特徵提升準確度。因此本研究基於南太平洋Lapita文化之考古紋飾,配合其紋飾分析規範,開發一套裝飾單元(unit)辨識系統。
系統流程分為三個部分,首先進行影像前處理與裝飾單元分割,接著以形狀上下文(shape context)與線條數統計量來表示圖像特徵,最後計算裝飾單元類別相似度,並給予使用者推薦類別之排序。實驗測試樣本包含了24類裝飾單元,分別以260個測試樣本進行分類,其辨識率高達99.6%,而平均每個單元處理時間為47.48毫秒。此外,當加入本研究之單元辨識結果當作陶片拼接特徵,可成功提升拼接色彩已消逝的Lapita考古碎片之效能。在本研究中,開發了首個 Lapita紋路單元辨識系統,其可有效減少考古工作流程的人力成本,並提升效率與效能。


Recently, researchers have shown an increasing interest in archaeological science, which strives for using information technology to assist analysis of historical remains. Previous research in archaeological pottery has concentrated on shape features of pottery shreds. However, there has been little discussion about the patterns on this topic. Patterns contain cultural meaning and uniqueness, which can both improve the efficiency of archaeological metadata analysis and the accuracy of shreds assembly. In this thesis, we have developed a system of unit recognition for pattern from the Lapita pottery, which is based on the standard of Lapita motif coding.
There are three steps in the process of our system. First stages comprise image preprocessing and unit segmentation. Then, shape context and histogram of stroke count features are then conducted to extract features from units. Eventually, units were ranked in a recommended sequence for user selection. The evaluation of unit recognition was assessed from the classification of 260-sampled units into 24 categories and the accuracy is 99.6% for the top-1 recommendation. And the average process time for each unit is 47.48 milliseconds. In addition, the effectiveness of reconstructing Lapita fragments was enhanced while adding our unit recognition results to reconstruct color-faded pottery fragments. In conclusion, the first Lapita unit recognition system is developed in this thesis, which facilitates the archaeological process by its high efficiency and effectiveness.


口試委員會審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
論文目錄 v
圖目錄 vii
表目錄 ix
第一章、緒論 1
1.1 研究背景與目的 1
1.2 相關研究 3
1.2.1 考古拼接系統 4
1.2.2 Lapita文化與紋飾記載規範 5
1.2.3 Lapita陶片的考古資訊化沿革 8
1.2.4 考古陶片紋理分類文章 9
1.3 系統架構 11
第二章、影像前處理 13
2.1 影像分割 14
2.1.1 裝飾單位擷取機制 14
2.1.2 紋路萃取 17
2.2 影像形態分析 19
第三章、特徵擷取 23
3.1 形狀上下文描述子 24
3.2 線條數統計量特徵 26
第四章、推薦排序 30
第五章、實驗結果與討論 33
5.1 單位辨識實驗 33
5.2 拼接系統與紋飾辨識特徵 36
第六章、結論與未來展望 39
參考文獻 41
附錄一 45


[1]U. Schurmans, "Refitting in the Old and New Worlds," BAR INTERNATIONAL SERIES, vol. 1596, p. 7, 2007.
[2]B. J. Mills, E. L. Camilli, and L. Wandsnider, "Spatial patterning in ceramic vessel distributions," BAR INTERNATIONAL SERIES, vol. 578, pp. 217-217, 1992.
[3]O. Lindauer, "Ceramic conjoinability: orphan sherds and reconstructing time," BAR International Series, vol. 578, pp. 210-210, 1992.
[4]C. A. Bollong, "Analysis of site stratigraphy and formation processes using patterns of pottery sherd dispersion," Journal of Field Archaeology, vol. 21, pp. 15-28, 1994.
[5]S. Chiu and C. Sand, "Recording of the Lapita motifs: proposal for a complete recording method," Archaeology in New Zealand, vol. 48, pp. 133-150, 2005.
[6]C. Papaodysseus, Pattern Recognition and Signal Processing in Archaeometry: Mathematical and Computational Solutions for Archaeology: Mathematical and Computational Solutions for Archaeology: IGI Global, 2011.
[7]L. Zhu, Z. Zhou, and D. Hu, "Globally consistent reconstruction of ripped-up documents," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 30, pp. 1-13, 2008.
[8]M. Werman and D. Weinshall, "Similarity and affine invariant distances between 2d point sets," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 17, pp. 810-814, 1995.
[9]G. Xu and Y. Xian, "An Approach for Polygon Fragment Reassembly Based on Multiple Features," in Intelligent Computation Technology and Automation, 2009. ICICTA''09. Second International Conference on, 2009, pp. 485-488.
[10]S. SantoshKumar and B. ShreyamshaKumar, "Edge envelope based reconstruction of torn document," in Proceedings of the Seventh Indian Conference on Computer Vision, Graphics and Image Processing, 2010, pp. 391-397.
[11]E. Justino, L. S. Oliveira, and C. Freitas, "Reconstructing shredded documents through feature matching," Forensic science international, vol. 160, pp. 140-147, 2006.
[12]A. Willis and D. B. Cooper, "Alignment of multiple non-overlapping axially symmetric 3d datasets," in Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, 2004, pp. 96-99.
[13]D. B. Cooper, A. Willis, S. Andrews, J. Baker, Y. Cao, D. Han, et al., "Assembling virtual pots from 3D measurements of their fragments," in Proceedings of the 2001 conference on Virtual reality, archeology, and cultural heritage, 2001, pp. 241-254.
[14]G. Oxholm and K. Nishino, "A flexible approach to reassembling thin artifacts of unknown geometry," Journal of Cultural Heritage, vol. 14, pp. 51-61, 2013.
[15]M. Ş. Sağıroğlu and A. Erçil, "A texture based approach to reconstruction of archaeological finds," Eurographics, 2005.
[16]P. Smith, D. Bespalov, A. Shokoufandeh, and P. Jeppson, "Classification of archaeological ceramic fragments using texture and color descriptors," in Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on, 2010, pp. 49-54.
[17]B. Szántó, P. Pozsegovics, Z. Vámossy, and S. Sergyan, "Sketch4match—Content-based image retrieval system using sketches," in Applied Machine Intelligence and Informatics (SAMI), 2011 IEEE 9th International Symposium on, 2011, pp. 183-188.
[18]D. Dunn and W. E. Higgins, "Optimal Gabor filters for texture segmentation," Image Processing, IEEE Transactions on, vol. 4, pp. 947-964, 1995.
[19]S. T. Acton and A. Rossi, "Matching and retrieval of tattoo images: Active contour cbir and glocal image features," in Image Analysis and Interpretation, 2008. SSIAI 2008. IEEE Southwest Symposium on, 2008, pp. 21-24.
[20]A. Willis, X. Orriols, and D. B. Cooper, "Accurately estimating sherd 3D surface geometry with application to pot reconstruction," in Computer Vision and Pattern Recognition Workshop, 2003. CVPRW''03. Conference on, 2003, pp. 5-5.
[21]Oxholm, G., and K. Nishino. "Reassembling thin artifacts of unknown geometry." Proceedings of the 12th International conference on Virtual Reality, Archaeology and Cultural Heritage. Eurographics Association, 2011.
[22]A. Karasik and U. Smilansky, "3D scanning technology as a standard archaeological tool for pottery analysis: practice and theory," Journal of Archaeological Science, vol. 35, pp. 1148-1168, 2008.
[23]G. Papaioannou, E.-A. Karabassi, and T. Theoharis, "Virtual archaeologist: Assembling the past," Computer Graphics and Applications, IEEE, vol. 21, pp. 53-59, 2001.
[24]G. Papaioannou and E.-A. Karabassi, "On the automatic assemblage of arbitrary broken solid artefacts," Image and Vision Computing, vol. 21, pp. 401-412, 2003.
[25]S. Chiu, "The Socio-economic Functions of Lapita Ceramic Production and Exchange: A Case Study from Site WKO-013A, Koné, New Caledonia," University of California, Berkeley, 2003.
[26]S. A. South, Method and theory in historical archeology: Academic Press, 1977.
[27]A. Blanco-González and J. Chapman, "A new method for identifying sherd refits: a case study from the Neolithic of Northumbria, UK," Journal of Field Archaeology, vol. 39, pp. 248-255, 2014.
[28]J. C. Chapman and B. I. Gaydarska, Parts and wholes: fragmentation in prehistoric context: Oxbow Books, 2006.
[29]L. S. Yu, H. J. Ku, C. L. Ting, R. I. Chang, Y. C. Wang, and J. M. Ho, "Content-Based Feature Matching for Fragment Reassembly of Ceramic Reconstruction," in Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2014 IEEE/WIC/ACM International Joint Conferences on, 2014, pp. 344-351.
[30]N. Otsu, "A threshold selection method from gray-level histograms," Automatica, vol. 11, pp. 23-27, 1975.
[31]M. Coster and J.-L. Chermant, "Image analysis and mathematical morphology for civil engineering materials," Cement and Concrete Composites, vol. 23, pp. 133-151, 2001.
[32]R. C. Gonzalez, "RE woods, Digital Image Processing," Addison–Wesely Publishing Company, 1992.
[33]H. Y. Kim and S. A. De Araújo, "Grayscale template-matching invariant to rotation, scale, translation, brightness and contrast," in Proceedings of the 2nd Pacific Rim conference on Advances in image and video technology, LNCS, vol. 4872, 2007, pp. 100-113.
[34]S. Belongie, J. Malik, and J. Puzicha, "Shape matching and object recognition using shape contexts," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 24, pp. 509-522, 2002.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文