跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭巧郁
研究生(外文):Chiao-Yu Hsiao
論文名稱:具壓電振動子之超穎材料板動態行為分析與應用
論文名稱(外文):Dynamic characteristic and application of a metamaterial plate with piezoelectric vibrators
指導教授:黃心豪黃心豪引用關係
指導教授(外文):Hsin-Haou Huang
口試委員:宋家驥施文彬吳文中
口試委員(外文):Chia-Chi SungWen-Pin ShihWen-Chung Wu
口試日期:2015-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:80
中文關鍵詞:超穎材料局部共振壓電效應振動發電
外文關鍵詞:metamateriallocal resonancepiezoelectric effectpower generation by vibration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:80
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究結合超穎材料的局部共振特性與壓電材料的正壓電效應,設計可將振動能轉換為電能的超穎材料板,預期能提供微型能量擷取器的壓電共振子設計理念。
為探討加入壓電效應對超穎材料局部共振的影響,首先進行理論推導,最後提出具壓電效應的超穎材料板運動方程式。超穎材料板的實際運動分析又可分為有限元素模擬及實驗兩部分,首先透過電腦輔助分析軟體COMSOL進行模擬,設計多個不同特徵頻率之內質量共振單元,並將以上內質量單元利用不同排列順序、不同內質量單元數量等變數組合成具有局部共振特性的超穎材料板,在針對所設計之超穎材料板以結構力學模組分析該模型在承受負載時因結構局部共振所造成的振動現象,同時也利用壓電模組進行壓電輸出的模擬。實驗部分則利用激振器給予固定頻率之負載,針對單一種內質量單元所組成之單共振超穎材料板進行簡諧試驗,最後比較模擬與實驗之結果。
由於原先設計之超穎材料模型振動並未如預期,因此另外提出與原先單共振模型結構差異較大之雙共振及多共振超穎材料模型,再以Comsol的結構力學模組分析其局部共振的效果。
最後本研究成功設計出具有單共振效果、雙共振效果及多共振效果之超穎材料板,但因為所設計超穎材料板厚度略薄,使得本身超穎材料板模態也略在低頻區域,會影響所預期之振動結果。

In this thesis, we combine local resonance characteristics of metamaterials and direct piezoelectric effect of piezoelectric material, design metamaterials sheet which can transform vibration energy into electrical energy. It expects to provide the design concept of the piezoelectric resonator of micro-energy harvesting.
To explore the local resonance influence for the metamaterial that add direct piezoelectric effect. First we derivate the theory, then make a motion eqation for Metamaterials plate which have direct piezoelectric effect. The analysis of actual motion can be divided into finite element analysis simulation and experiments in two parts. First we use computer-assisted analysis software “COMSOL” to simulate, design several different characteristic frequencies of resonance mass-in-mass, and use different sort order, different mass-in-mass unit quantity variable of above mass-in-mass unit to combination to have local resonance properties of metamaterials sheet, then base on the metamaterials sheet which we design, use structural mechanics module to analysis when the model under load cause phenomena of Vibration due to local resonance of structure, but also use piezoelectric modules to simulate piezoelectric output. Experimental parts use the loads which is given fixed-frequency by shaker, then base on consisting of a single mass-in-mass unit for a single resonant metamaterials plate to do simple harmonic test. Finally, compare the result for simulation and experimental.
Since metamaterials vibration of the original design was not as expected, it also presents double resonance and multiple resonance metamaterials models that are quite different with single resonance metamaterials models, then use Comsol’s solid machanics models analysis the consequent of local resonance.
Finally, this study successfully designed metamaterials plates which have single resonance, double resonance and multiple resonance effect, but because of the metamaterials designed itself are too thin, cause metamaterials sheets model type also slightly in the low frequency region , it will affect the vibration of the expected results.

口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 xii
第1章 緒論 1
1.1 研究動機 1
1.2 文獻回顧與壓電原理 4
1.2.1 超穎材料 4
1.2.2 壓電原理 8
1.2.3 微型能量擷取器 10
1.3 研究架構 15
第2章 超穎材料板理論與模型建構 16
2.1 超穎材料板理論 16
2.2 超穎材料板結構設計 19
2.2.1 超穎材料內質量單元 19
2.2.2 超穎材料板 20
2.3 數值模擬參數設定 23
2.3.1 材料參數與邊界條件 23
2.3.2 網格收斂性及求解器時間步階收斂性分析 24
第3章 有限元素模擬分析 25
3.1 單共振超穎材料板 25
3.1.1 負載與結構共振與否 25
3.1.1 不同負載振幅 34
3.1.2 不同內質量單元數量 38
3.2 雙共振超穎材料板 40
第4章 超穎材料板製程與實驗 42
4.1 製程設備 42
4.2 製程步驟 44
4.3 實驗架設 48
4.3.1 實驗流程設計 48
4.3.2 實驗量測 50
4.4 實驗結果 54
4.4.1 其他量測方法 54
4.5 小結 59
第5章 其他多共振模型有限元素模擬 60
5.1 雙共振模型 60
5.1.1 雙共振模型一 61
5.1.2 雙共振模型二 64
5.1.1 雙共振模型三 68
5.2 多共振模型 69
5.2.1 多共振模型一 69
5.2.2 多共振模型二 71
第6章 結論與建議 73
6.1 結論 73
6.2 建議 74
參考文獻 75
附錄一 80


[1]P. B. Koeneman, I. J. Busch-Vishniac, and K. L. Wood, "Feasibility of micro power supplies for MEMS," Microelectromechanical Systems, Journal of, vol. 6, pp. 355-362, 1997.
[2]林順區, "二維結構之微型能量擷取器設計研製," 臺灣大學工程科學及海洋工程學研究所學位論文, pp. 1-100, 2009.
[3]L. Zuo, B. Scully, J. Shestani, and Y. Zhou, "Design and characterization of an electromagnetic energy harvester for vehicle suspensions," Smart Materials and Structures, vol. 19, p. 045003, 2010.
[4]S. Cheng and D. P. Arnold, "A study of a multi-pole magnetic generator for low-frequency vibrational energy harvesting," Journal of Micromechanics and Microengineering, vol. 20, p. 025015, 2010.
[5]P. Basset, D. Galayko, A. M. Paracha, F. Marty, A. Dudka, and T. Bourouina, "A batch-fabricated and electret-free silicon electrostatic vibration energy harvester," Journal of Micromechanics and Microengineering, vol. 19, p. 115025, 2009.
[6]H. H. Huang and C. T. Sun, "Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density," New Journal of Physics, vol. 11, p. 013003, 2009.
[7]S.-C. Lin and W.-J. Wu, "Piezoelectric micro energy harvesters based on stainless-steel substrates," Smart Materials and Structures, vol. 22, p. 045016, 2013.
[8]G. W. Milton and J. R. Willis, "On modifications of Newton''s second law and linear continuum elastodynamics," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2007, pp. 855-880.
[9]H. Huang and C. Sun, "Theoretical investigation of the behavior of an acoustic metamaterial with extreme Young''s modulus," Journal of the Mechanics and Physics of Solids, vol. 59, pp. 2070-2081, 2011.
[10]H. Chen, H. Zeng, C. Ding, C. Luo, and X. Zhao, "Double-negative acoustic metamaterial based on hollow steel tube meta-atom," Journal of Applied Physics, vol. 113, p. 104902, 2013.
[11]Z. Liang and J. Li, "Extreme acoustic metamaterial by coiling up space," Physical review letters, vol. 108, p. 114301, 2012.
[12]H.-C. Zeng, C.-R. Luo, H.-J. Chen, S.-L. Zhai, C.-L. Ding, and X.-P. Zhao, "Flute-model acoustic metamaterials with simultaneously negative bulk modulus and mass density," Solid State Communications, vol. 173, pp. 14-18, 2013.
[13]J. T. Overvelde and K. Bertoldi, "Relating pore shape to the non-linear response of periodic elastomeric structures," Journal of the Mechanics and Physics of Solids, vol. 64, pp. 351-366, 2014.
[14]J. T. B. Overvelde, S. Shan, and K. Bertoldi, "Compaction through buckling in 2D periodic, soft and porous structures: effect of pore shape," Advanced Materials, vol. 24, pp. 2337-2342, 2012.
[15]V. G. Veselago, "THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF IMG align= ABSMIDDLE alt= ϵ eps/IMG AND μ," Physics-Uspekhi, vol. 10, pp. 509-514, 1968.
[16]J. B. Pendry, "Negative refraction makes a perfect lens," Physical review letters, vol. 85, p. 3966, 2000.
[17]L. Brillouin and M. Parodi, "Propagation of waves in periodic structures," ed: Dover, New York, 1953.
[18]Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. Chan, et al., "Locally resonant sonic materials," Science, vol. 289, pp. 1734-1736, 2000.
[19]Z. Liu, C. Chan, and P. Sheng, "Analytic model of phononic crystals with local resonances," Physical Review B, vol. 71, p. 014103, 2005.
[20]吳亮諭, "聲子晶體共振腔之分析與聲能能量擷取," 成功大學機械工程學系學位論文, pp. 1-121, 2010.
[21]S. Yao, X. Zhou, and G. Hu, "Experimental study on negative effective mass in a 1D mass–spring system," New Journal of Physics, vol. 10, p. 043020, 2008.
[22]R. Zhu, G. Hu, M. Reynolds, and G. Huang, "An elastic metamaterial beam for broadband vibration suppression," in SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, 2013, pp. 86952J-86952J-10.
[23]G. Huang and C. Sun, "Band gaps in a multiresonator acoustic metamaterial," Journal of Vibration and Acoustics, vol. 132, p. 031003, 2010.
[24]K. T. Tan, H. Huang, and C. Sun, "Negative Effective Mass Density of Acoustic Metamaterial using Dual-Resonator Spring-Mass Model," 2012.
[25]G. Gantzounis, M. Serra-Garcia, K. Homma, J. Mendoza, and C. Daraio, "Granular metamaterials for vibration mitigation," Journal of Applied Physics, vol. 114, p. 093514, 2013.
[26]Z. Yang, H. Dai, N. Chan, G. Ma, and P. Sheng, "Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime," Applied Physics Letters, vol. 96, p. 041906, 2010.
[27]W. G. Cady, "Piezoelectricity," 1946.
[28]T. Starner, "Human-powered wearable computing," IBM systems Journal, vol. 35, pp. 618-629, 1996.
[29]N. S. Shenck and J. A. Paradiso, "Energy scavenging with shoe-mounted piezoelectrics," IEEE micro, pp. 30-42, 2001.
[30]A. Bayrashev, W. P. Robbins, and B. Ziaie, "Low frequency wireless powering of microsystems using piezoelectric–magnetostrictive laminate composites," Sensors and Actuators A: Physical, vol. 114, pp. 244-249, 2004.
[31]H. W. Kim, S. Priya, K. Uchino, and R. E. Newnham, "Piezoelectric energy harvesting under high pre-stressed cyclic vibrations," Journal of Electroceramics, vol. 15, pp. 27-34, 2005.
[32]M. Ericka, D. Vasic, F. Costa, G. Poulin, and S. Tliba, "Energy harvesting from vibration using a piezoelectric membrane," in Journal de Physique IV (Proceedings), 2005, pp. 187-193.
[33]S. Kim, W. W. Clark, and Q.-M. Wang, "Piezoelectric energy harvesting with a clamped circular plate: analysis," Journal of intelligent material systems and structures, vol. 16, pp. 847-854, 2005.
[34]S. Kim, W. W. Clark, and Q.-M. Wang, "Piezoelectric energy harvesting with a clamped circular plate: experimental study," Journal of Intelligent Material Systems and Structures, vol. 16, pp. 855-863, 2005.
[35]S. Shahruz, "Design of mechanical band-pass filters for energy scavenging," Journal of Sound and Vibration, vol. 292, pp. 987-998, 2006.
[36]S. Shahruz, "Design of mechanical band-pass filters with large frequency bands for energy scavenging," Mechatronics, vol. 16, pp. 523-531, 2006.
[37]S. Shahruz, "Design of mechanical band-pass filters for energy scavenging: multi-degree-of-freedom models," Journal of Vibration and Control, vol. 14, pp. 753-768, 2008.
[38]林蕙君, "串聯陣列式壓電振動子能量擷取系統之分析研究," 臺灣大學應用力學研究所學位論文, pp. 1-90, 2012.
[39]陳彥儒, "陣列式壓電能量擷取子之寬頻設計," 臺灣大學應用力學研究所學位論文, pp. 1-81, 2013.
[40]M. Pozzi, M. S. Aung, M. Zhu, R. K. Jones, and J. Y. Goulermas, "The pizzicato knee-joint energy harvester: characterization with biomechanical data and the effect of backpack load," Smart Materials and Structures, vol. 21, p. 075023, 2012.
[41]M. Pozzi and M. Zhu, "Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation," Smart Materials and Structures, vol. 20, p. 055007, 2011.
[42]M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli, and A. Taroni, "Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems," Sensors and Actuators A: Physical, vol. 142, pp. 329-335, 2008.
[43]X. Wu, J. Lin, S. Kato, K. Zhang, T. Ren, and L. Liu, "A frequency adjustable vibration energy harvester," Proceedings of PowerMEMS, pp. 245-248, 2008.
[44]V. R. Challa, M. Prasad, Y. Shi, and F. T. Fisher, "A vibration energy harvesting device with bidirectional resonance frequency tunability," Smart Materials and Structures, vol. 17, p. 015035, 2008.
[45]A. Erturk, J. Hoffmann, and D. Inman, "A piezomagnetoelastic structure for broadband vibration energy harvesting," Applied Physics Letters, vol. 94, p. 254102, 2009.
[46]J.-T. Lin and B. Alphenaar, "Enhancement of energy harvested from a random vibration source by magnetic coupling of a piezoelectric cantilever," Journal of Intelligent Material Systems and Structures, vol. 21, pp. 1337-1341, 2010.
[47]J.-T. Lin, B. Lee, and B. Alphenaar, "The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency," Smart Materials and Structures, vol. 19, p. 045012, 2010.
[48]Y. Tadesse, S. Zhang, and S. Priya, "Multimodal energy harvesting system: piezoelectric and electromagnetic," Journal of Intelligent Material Systems and Structures, vol. 20, pp. 625-632, 2009.
[49]E. S. Leland and P. K. Wright, "Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload," Smart Materials and Structures, vol. 15, p. 1413, 2006.
[50]Y. Jeon, R. Sood, J.-H. Jeong, and S.-G. Kim, "MEMS power generator with transverse mode thin film PZT," Sensors and Actuators A: Physical, vol. 122, pp. 16-22, 2005.
[51]C. Bowen, H. Kim, P. Weaver, and S. Dunn, "Piezoelectric and ferroelectric materials and structures for energy harvesting applications," Energy & Environmental Science, vol. 7, pp. 25-44, 2014.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top