# 臺灣博碩士論文加值系統

(44.211.239.1) 您好！臺灣時間：2023/01/31 05:26

:::

### 詳目顯示

:

• 被引用:1
• 點閱:129
• 評分:
• 下載:0
• 書目收藏:0
 本文以三維翼面尾端跡流為主要研究之對象，尋找均勻流流經此翼面之尾跡流位置。本文假設流場內之流體滿足勢流，利用邊界積分方程式使用高斯積分法對離散後的邊界積分方程式進行積分，求解此翼面表面上之速度勢。將翼面邊界上所求的尾端環流量帶入邊界積分式以求解流場中各點位置的速度勢，再藉由改變尾跡流的形狀來觀察法向速度。本文嘗試利用最小方差的方式將勢流理論解在跡流面上的法向速度最小化為目標，希望能有效的尋找出三維尾翼跡流的位置，而不再需要其他額外的輔助工具。
 This study focuses on how to locate the wake position of a three-dimensional airfoil due to a uniform flow. Based on the potential theory, the boundary integral method is applied to solve the velocity potential on the boundary of the airfoil. Once the strength of the velocity potential is solved, it can be substituted into the boundary integral equation and find all the velocity potential in the flow field. By adjusting the shape of the wake, and minimizing the normal velocity components on the surface of the wake, the goal is to select a correct position of wake.
 誌謝 I摘要 IIABSTRACT III目錄 IV圖目錄 VI表目錄 VIII第一章 緒論 11.1 研究動機及背景 11.2 文獻回顧 21.3 研究目的與方法 4第二章 基本理論 62.1 基本假設 62.2 高斯散度定理、格林第一定理及格林第二定理 62.3 邊界積分方程式 82.4 三維翼面外流場 112.5 奇異點與近似奇異點之處理 172.5 處理四邊形環積分範例 21第三章 數值計算 273.1 翼面外流場未考慮尾跡流形狀之數值計算結果 273.2 翼面尾端跡流之流場速度勢計算 323.3 無窮處的尾跡流流場計算 343.4 不同三維翼面尾跡流形狀 353.5 尋找尾跡流位置 513.6 升力係數的驗證 59第四章 結論與展望 644.1 結論 644.2 展望 65參考文獻 66
 [1]Mikhlin, S. G., Integral Equations. London: Press, 1957.[2]Jaswon, M. A., “Integral Equation Methods in Potential Theory─I” Proc. Roy. Soc. Lond., vol. A275, pp. 23-32, 1963.[3]Symm, G. T., “Integral Equation Methods in Potential Theory─II” Proc. Roy. Soc. Lond., vol. A275, pp. 33-46, 1963.[4]Lamb, H., “Hydrodynamics”, Dover, New York, 1945.[5]Hess, J. L. and Smith, A. M., “Calculation of nonlifting potential flow aboutarbitrary three-dimensional smooth bodies”, J. Ship Research, vol. 7, pp. 22-44, 1964.[6]Rizzo, F. J. “An integral equation approach to boundary value problems ofclassical elastostatics” Quart. Appl. Math., vol. 25, pp. 83-95, 1967.[7]Cruse, T. A. “Numerical solutions in three dimensional elastostatics”, Int. J. Solids and Structures, vol. 5, pp. 1259-1274, 1969.[8]Cruse, T. A. and Rizzo, F. J., Boundary Integral Equation Method, New York: McGraw-Hill, 1975.[9]Morino, L. and Kuo, C. C., “Subsonic potential aerodynamics for complex configurations: a general theory”, AIAA J., vol. 12, pp. 191-197, 1974.[10]Djojodihardo, R. H. and Widnall, S. E., “A numerical method for the calculation of nonlinear unsteady lifting potential flow problems”, AIAA J., vol. 7, pp. 2001-2009, 1969.[11]Sarpkaya, T. “Computational methods with vortices-the 1988 Freeman Scholar Lecture”, Journal of Fluids Engineering, vol. 111, pp. 9-52, 1989.[12]Joseph, K. and Plotkin, A., “Low-Speed Areodynamics From Wing Theory to Panel Methods”. McGraw-Hill, New York , 1974.[13]Lachat, J. C. and Watson J. O., “A second generation boundary integral equation program for three-dimensional elastic analysis”, ASME Applied Mechanics Division National Conference, New York, 1975.[14]Rizzo, F. J. and Shippy, D. J., “An advanced boundary integral equation method for three-dimensional thermo-elasticity”, Int. J. Numer. Methods Eng., vol. 11, pp. 1753-1768, 1977.[15]Zang, Y. L. and Cheng Y. M., “A higher-order boundary element method for three-dimensional potential problems”, Int. J. Numer. Methods Fluid, vol. 21, pp. 321-331, 1995.[16]Amini, S. and Wilton D. T., “An investigation of boundary element methods for the exterior acoustic problem”, Comput Methosd. Appl. Mech. Eng., vol. 54, pp. 49-65, 1986.[17]Grilli, S. T. and Svendsen I. A., “Corner problems and global accuracy in the boundary element solution of nonlinear wave flows”, Engineering Analysis with Boundary Elements, vol. 7, pp. 178-195, 1990.[18]Newman J. N., “Distributions od source and normal dipoles over a quadrilateral panel”, J. Eng. Math , vol. 20, pp. 113-126, 1986.[19]Landweber, L. and Macagno M., Irrotational Flow about Ship Forms, IHHR Report, Iowa, No. 123, 1969.[20]Webster, W. C., “The flow about arbitrary three-dimension smooth bodies”, J. Ship Research, vol. 19, pp. 206-218, 1975.[21]Heise, U., “Numerical properties of integral equation in which the given boundary values and the solutions are defind on different curves”, Comput. Struct., vol. 8, pp. 199-205, 1978.[22]Han, P. S. and Olson, M. S., “An adaptive boundary element method”, Int. J. Numer. Methods Eng., vol. 24, pp. 1187-1202, 1987.[23]Johnson, R. L. and Fairweather, G., “The method of fundamental solutions for problem in potential flow”, Appl. Math Modeling, vol.8, pp. 265-270, 1984.[24]Schulz, W. W. and Hong, S. W., “Solution of potential problems using an overdetermined complex boundary integral method”, J. Comput. Phys., vol. 84, pp. 414-440, 1989.[25]Cao, Y. and Schultz, W. W. and Beck, R. F., “Three-dimension desingularized boundary integral methods for potential problems”, Int. J. Numer. Methods Fluid, vol. 12, pp. 785-803, 1991.[26]Hwang, W. S., “Hypersingular boundary integral equations for exterior acoustic problems,” J. Acoust. Soc. Am., vol. 101, pp. 3336-3342, 1997.[27]Hwang, W. S. and Huang Y. Y., “Non-singular direct formulation of boundary integral equations for potential flows,” Int. J. Numer. Mech Fluids, vol. 26, pp. 627-635, 1998.[28]Hwang, Y. Y., “The study on potential flow by nonlinear boundary element methods,” 國立臺灣大學博士論文, 1998.[29]Chang, J. M., “Numerical studies on desingularized Cauchy’s formula with applications to interior potential problems,” Int. J. Numer. Mech Eng., vol. 46, pp. 805-824, 1999.[30]Yang, S. A., “On the singularities of Green’s formula and its normal derivative with an application to surface-wave-body interaction problems,” Int. J. Numer. Mech Eng., vol. 47, pp. 1841-1864, 2000.[31]Hwang, W. S., “A boundary node method for airfoils based on the Dirichlet condition,” Comput. Methods Appl. Mech. Eng., vol. 190, pp. 1679-1688, 2000.[32]Morino, L. and Bernardini, G., “Singularities in BIEs for the Laplace equation; Joukouski trailing-edge conjecture revisited,” Eng. Anal. Bound. Elm., vol. 25, pp. 805-818, 2001.[33]Chadwick, E., “A slender-wing theory in potential flow,” Eng. Anal Bound Elm, Proc. Roy. Soc. A., pp. 415-432, 2005.[34]Hess, J L., Higher Order Numerical Solution Of The Integral Equation For The Two-Dimensional Neumann Problem, Computer Methods Appl. Mech. Eng., vol. 2, pp. 1-15, 1973.[35]洪立萍，「應用邊界積分法求解二維勢流流場問題」，國立台灣大學碩士論文，2000。[36]黃盈翔，「非奇異性邊界積分法對二維矩形流場之數值模擬」，國立台灣大學碩士論文，2004。[37]廖健凱，「邊界元素法對二維翼型之流場分析」，國立台灣大學碩士論文，2011。[38]施育宏，「利用最小方差法對二維翼型之跡流定位」，國立台灣大學碩士論文，2012。
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 非奇異性邊界積分法對二維矩形流場之數值模擬 2 應用邊界積分法求解二維勢流場問題 3 邊界元素法對二維翼型之流場分析 4 利用最小方差法對二維翼型之跡流定位

 無相關期刊

 1 邊界積分法對螺槳尾端跡流場之研究 2 利用最小方差法對二維翼型之跡流定位 3 邊界元素法對二維翼型之流場分析 4 以聲學類比方法預測螺槳噪音 5 快速多極點加速之無奇異性邊界積分方程 6 以正規化邊界積分法分析非線性液體沖激行為及其在諧調液體阻尼器之應用 7 智慧型手機上的購物輔助系統— SBSAS 8 水下音傳於崎嶇地形之數值模擬 9 以非奇異性暇積分改善三維邊界積分法 10 應用邊界積分法求解二維勢流場問題 11 遊戲關卡難度評估模式探討 12 整合製備相轉移材料微膠囊之同心毛細管微流道系統開發研究 13 水氣摻雜石墨烯之溫度感測器 14 使用虛擬平衡信號於電源完整度之改善設計 15 無閥式微幫浦結合慣性分離微流道系統

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室