[1]Mikhlin, S. G., Integral Equations. London: Press, 1957.
[2]Jaswon, M. A., “Integral Equation Methods in Potential Theory─I” Proc. Roy. Soc. Lond., vol. A275, pp. 23-32, 1963.
[3]Symm, G. T., “Integral Equation Methods in Potential Theory─II” Proc. Roy. Soc. Lond., vol. A275, pp. 33-46, 1963.
[4]Lamb, H., “Hydrodynamics”, Dover, New York, 1945.
[5]Hess, J. L. and Smith, A. M., “Calculation of nonlifting potential flow about
arbitrary three-dimensional smooth bodies”, J. Ship Research, vol. 7, pp. 22-44, 1964.
[6]Rizzo, F. J. “An integral equation approach to boundary value problems of
classical elastostatics” Quart. Appl. Math., vol. 25, pp. 83-95, 1967.
[7]Cruse, T. A. “Numerical solutions in three dimensional elastostatics”, Int. J. Solids and Structures, vol. 5, pp. 1259-1274, 1969.
[8]Cruse, T. A. and Rizzo, F. J., Boundary Integral Equation Method, New York: McGraw-Hill, 1975.
[9]Morino, L. and Kuo, C. C., “Subsonic potential aerodynamics for complex configurations: a general theory”, AIAA J., vol. 12, pp. 191-197, 1974.
[10]Djojodihardo, R. H. and Widnall, S. E., “A numerical method for the calculation of nonlinear unsteady lifting potential flow problems”, AIAA J., vol. 7, pp. 2001-2009, 1969.
[11]Sarpkaya, T. “Computational methods with vortices-the 1988 Freeman Scholar Lecture”, Journal of Fluids Engineering, vol. 111, pp. 9-52, 1989.
[12]Joseph, K. and Plotkin, A., “Low-Speed Areodynamics From Wing Theory to Panel Methods”. McGraw-Hill, New York , 1974.
[13]Lachat, J. C. and Watson J. O., “A second generation boundary integral equation program for three-dimensional elastic analysis”, ASME Applied Mechanics Division National Conference, New York, 1975.
[14]Rizzo, F. J. and Shippy, D. J., “An advanced boundary integral equation method for three-dimensional thermo-elasticity”, Int. J. Numer. Methods Eng., vol. 11, pp. 1753-1768, 1977.
[15]Zang, Y. L. and Cheng Y. M., “A higher-order boundary element method for three-dimensional potential problems”, Int. J. Numer. Methods Fluid, vol. 21, pp. 321-331, 1995.
[16]Amini, S. and Wilton D. T., “An investigation of boundary element methods for the exterior acoustic problem”, Comput Methosd. Appl. Mech. Eng., vol. 54, pp. 49-65, 1986.
[17]Grilli, S. T. and Svendsen I. A., “Corner problems and global accuracy in the boundary element solution of nonlinear wave flows”, Engineering Analysis with Boundary Elements, vol. 7, pp. 178-195, 1990.
[18]Newman J. N., “Distributions od source and normal dipoles over a quadrilateral panel”, J. Eng. Math , vol. 20, pp. 113-126, 1986.
[19]Landweber, L. and Macagno M., Irrotational Flow about Ship Forms, IHHR Report, Iowa, No. 123, 1969.
[20]Webster, W. C., “The flow about arbitrary three-dimension smooth bodies”, J. Ship Research, vol. 19, pp. 206-218, 1975.
[21]Heise, U., “Numerical properties of integral equation in which the given boundary values and the solutions are defind on different curves”, Comput. Struct., vol. 8, pp. 199-205, 1978.
[22]Han, P. S. and Olson, M. S., “An adaptive boundary element method”, Int. J. Numer. Methods Eng., vol. 24, pp. 1187-1202, 1987.
[23]Johnson, R. L. and Fairweather, G., “The method of fundamental solutions for problem in potential flow”, Appl. Math Modeling, vol.8, pp. 265-270, 1984.
[24]Schulz, W. W. and Hong, S. W., “Solution of potential problems using an overdetermined complex boundary integral method”, J. Comput. Phys., vol. 84, pp. 414-440, 1989.
[25]Cao, Y. and Schultz, W. W. and Beck, R. F., “Three-dimension desingularized boundary integral methods for potential problems”, Int. J. Numer. Methods Fluid, vol. 12, pp. 785-803, 1991.
[26]Hwang, W. S., “Hypersingular boundary integral equations for exterior acoustic problems,” J. Acoust. Soc. Am., vol. 101, pp. 3336-3342, 1997.
[27]Hwang, W. S. and Huang Y. Y., “Non-singular direct formulation of boundary integral equations for potential flows,” Int. J. Numer. Mech Fluids, vol. 26, pp. 627-635, 1998.
[28]Hwang, Y. Y., “The study on potential flow by nonlinear boundary element methods,” 國立臺灣大學博士論文, 1998.
[29]Chang, J. M., “Numerical studies on desingularized Cauchy’s formula with applications to interior potential problems,” Int. J. Numer. Mech Eng., vol. 46, pp. 805-824, 1999.
[30]Yang, S. A., “On the singularities of Green’s formula and its normal derivative with an application to surface-wave-body interaction problems,” Int. J. Numer. Mech Eng., vol. 47, pp. 1841-1864, 2000.
[31]Hwang, W. S., “A boundary node method for airfoils based on the Dirichlet condition,” Comput. Methods Appl. Mech. Eng., vol. 190, pp. 1679-1688, 2000.
[32]Morino, L. and Bernardini, G., “Singularities in BIEs for the Laplace equation; Joukouski trailing-edge conjecture revisited,” Eng. Anal. Bound. Elm., vol. 25, pp. 805-818, 2001.
[33]Chadwick, E., “A slender-wing theory in potential flow,” Eng. Anal Bound Elm, Proc. Roy. Soc. A., pp. 415-432, 2005.
[34]Hess, J L., Higher Order Numerical Solution Of The Integral Equation For The Two-Dimensional Neumann Problem, Computer Methods Appl. Mech. Eng., vol. 2, pp. 1-15, 1973.
[35]洪立萍,「應用邊界積分法求解二維勢流流場問題」,國立台灣大學碩士論文,2000。[36]黃盈翔,「非奇異性邊界積分法對二維矩形流場之數值模擬」,國立台灣大學碩士論文,2004。[37]廖健凱,「邊界元素法對二維翼型之流場分析」,國立台灣大學碩士論文,2011。[38]施育宏,「利用最小方差法對二維翼型之跡流定位」,國立台灣大學碩士論文,2012。