跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 05:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉明學
研究生(外文):Ming-Syue Ye
論文名稱:三維機翼尾端跡流之研究
論文名稱(外文):Research of the Three-Dimensional Airfoil Wake
指導教授:黃維信黃維信引用關係
口試委員:辛敬業王昭男謝傳璋
口試日期:2015-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:69
中文關鍵詞:翼型機翼理論勢流理論邊界積分法尾跡流
外文關鍵詞:airfoilairfoil theorypotential flow theoryboundary integral methodwake
相關次數:
  • 被引用被引用:1
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以三維翼面尾端跡流為主要研究之對象,尋找均勻流流經此翼面之尾跡流位置。本文假設流場內之流體滿足勢流,利用邊界積分方程式使用高斯積分法對離散後的邊界積分方程式進行積分,求解此翼面表面上之速度勢。將翼面邊界上所求的尾端環流量帶入邊界積分式以求解流場中各點位置的速度勢,再藉由改變尾跡流的形狀來觀察法向速度。本文嘗試利用最小方差的方式將勢流理論解在跡流面上的法向速度最小化為目標,希望能有效的尋找出三維尾翼跡流的位置,而不再需要其他額外的輔助工具。

This study focuses on how to locate the wake position of a three-dimensional airfoil due to a uniform flow. Based on the potential theory, the boundary integral method is applied to solve the velocity potential on the boundary of the airfoil. Once the strength of the velocity potential is solved, it can be substituted into the boundary integral equation and find all the velocity potential in the flow field. By adjusting the shape of the wake, and minimizing the normal velocity components on the surface of the wake, the goal is to select a correct position of wake.

誌謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 研究動機及背景 1
1.2 文獻回顧 2
1.3 研究目的與方法 4
第二章 基本理論 6
2.1 基本假設 6
2.2 高斯散度定理、格林第一定理及格林第二定理 6
2.3 邊界積分方程式 8
2.4 三維翼面外流場 11
2.5 奇異點與近似奇異點之處理 17
2.5 處理四邊形環積分範例 21
第三章 數值計算 27
3.1 翼面外流場未考慮尾跡流形狀之數值計算結果 27
3.2 翼面尾端跡流之流場速度勢計算 32
3.3 無窮處的尾跡流流場計算 34
3.4 不同三維翼面尾跡流形狀 35
3.5 尋找尾跡流位置 51
3.6 升力係數的驗證 59
第四章 結論與展望 64
4.1 結論 64
4.2 展望 65
參考文獻 66


[1]Mikhlin, S. G., Integral Equations. London: Press, 1957.

[2]Jaswon, M. A., “Integral Equation Methods in Potential Theory─I” Proc. Roy. Soc. Lond., vol. A275, pp. 23-32, 1963.

[3]Symm, G. T., “Integral Equation Methods in Potential Theory─II” Proc. Roy. Soc. Lond., vol. A275, pp. 33-46, 1963.

[4]Lamb, H., “Hydrodynamics”, Dover, New York, 1945.

[5]Hess, J. L. and Smith, A. M., “Calculation of nonlifting potential flow about
arbitrary three-dimensional smooth bodies”, J. Ship Research, vol. 7, pp. 22-44, 1964.

[6]Rizzo, F. J. “An integral equation approach to boundary value problems of
classical elastostatics” Quart. Appl. Math., vol. 25, pp. 83-95, 1967.

[7]Cruse, T. A. “Numerical solutions in three dimensional elastostatics”, Int. J. Solids and Structures, vol. 5, pp. 1259-1274, 1969.

[8]Cruse, T. A. and Rizzo, F. J., Boundary Integral Equation Method, New York: McGraw-Hill, 1975.

[9]Morino, L. and Kuo, C. C., “Subsonic potential aerodynamics for complex configurations: a general theory”, AIAA J., vol. 12, pp. 191-197, 1974.

[10]Djojodihardo, R. H. and Widnall, S. E., “A numerical method for the calculation of nonlinear unsteady lifting potential flow problems”, AIAA J., vol. 7, pp. 2001-2009, 1969.

[11]Sarpkaya, T. “Computational methods with vortices-the 1988 Freeman Scholar Lecture”, Journal of Fluids Engineering, vol. 111, pp. 9-52, 1989.


[12]Joseph, K. and Plotkin, A., “Low-Speed Areodynamics From Wing Theory to Panel Methods”. McGraw-Hill, New York , 1974.

[13]Lachat, J. C. and Watson J. O., “A second generation boundary integral equation program for three-dimensional elastic analysis”, ASME Applied Mechanics Division National Conference, New York, 1975.

[14]Rizzo, F. J. and Shippy, D. J., “An advanced boundary integral equation method for three-dimensional thermo-elasticity”, Int. J. Numer. Methods Eng., vol. 11, pp. 1753-1768, 1977.

[15]Zang, Y. L. and Cheng Y. M., “A higher-order boundary element method for three-dimensional potential problems”, Int. J. Numer. Methods Fluid, vol. 21, pp. 321-331, 1995.

[16]Amini, S. and Wilton D. T., “An investigation of boundary element methods for the exterior acoustic problem”, Comput Methosd. Appl. Mech. Eng., vol. 54, pp. 49-65, 1986.

[17]Grilli, S. T. and Svendsen I. A., “Corner problems and global accuracy in the boundary element solution of nonlinear wave flows”, Engineering Analysis with Boundary Elements, vol. 7, pp. 178-195, 1990.

[18]Newman J. N., “Distributions od source and normal dipoles over a quadrilateral panel”, J. Eng. Math , vol. 20, pp. 113-126, 1986.

[19]Landweber, L. and Macagno M., Irrotational Flow about Ship Forms, IHHR Report, Iowa, No. 123, 1969.

[20]Webster, W. C., “The flow about arbitrary three-dimension smooth bodies”, J. Ship Research, vol. 19, pp. 206-218, 1975.

[21]Heise, U., “Numerical properties of integral equation in which the given boundary values and the solutions are defind on different curves”, Comput. Struct., vol. 8, pp. 199-205, 1978.



[22]Han, P. S. and Olson, M. S., “An adaptive boundary element method”, Int. J. Numer. Methods Eng., vol. 24, pp. 1187-1202, 1987.

[23]Johnson, R. L. and Fairweather, G., “The method of fundamental solutions for problem in potential flow”, Appl. Math Modeling, vol.8, pp. 265-270, 1984.

[24]Schulz, W. W. and Hong, S. W., “Solution of potential problems using an overdetermined complex boundary integral method”, J. Comput. Phys., vol. 84, pp. 414-440, 1989.

[25]Cao, Y. and Schultz, W. W. and Beck, R. F., “Three-dimension desingularized boundary integral methods for potential problems”, Int. J. Numer. Methods Fluid, vol. 12, pp. 785-803, 1991.

[26]Hwang, W. S., “Hypersingular boundary integral equations for exterior acoustic problems,” J. Acoust. Soc. Am., vol. 101, pp. 3336-3342, 1997.

[27]Hwang, W. S. and Huang Y. Y., “Non-singular direct formulation of boundary integral equations for potential flows,” Int. J. Numer. Mech Fluids, vol. 26, pp. 627-635, 1998.

[28]Hwang, Y. Y., “The study on potential flow by nonlinear boundary element methods,” 國立臺灣大學博士論文, 1998.

[29]Chang, J. M., “Numerical studies on desingularized Cauchy’s formula with applications to interior potential problems,” Int. J. Numer. Mech Eng., vol. 46, pp. 805-824, 1999.

[30]Yang, S. A., “On the singularities of Green’s formula and its normal derivative with an application to surface-wave-body interaction problems,” Int. J. Numer. Mech Eng., vol. 47, pp. 1841-1864, 2000.

[31]Hwang, W. S., “A boundary node method for airfoils based on the Dirichlet condition,” Comput. Methods Appl. Mech. Eng., vol. 190, pp. 1679-1688, 2000.


[32]Morino, L. and Bernardini, G., “Singularities in BIEs for the Laplace equation; Joukouski trailing-edge conjecture revisited,” Eng. Anal. Bound. Elm., vol. 25, pp. 805-818, 2001.

[33]Chadwick, E., “A slender-wing theory in potential flow,” Eng. Anal Bound Elm, Proc. Roy. Soc. A., pp. 415-432, 2005.

[34]Hess, J L., Higher Order Numerical Solution Of The Integral Equation For The Two-Dimensional Neumann Problem, Computer Methods Appl. Mech. Eng., vol. 2, pp. 1-15, 1973.

[35]洪立萍,「應用邊界積分法求解二維勢流流場問題」,國立台灣大學碩士論文,2000。

[36]黃盈翔,「非奇異性邊界積分法對二維矩形流場之數值模擬」,國立台灣大學碩士論文,2004。

[37]廖健凱,「邊界元素法對二維翼型之流場分析」,國立台灣大學碩士論文,2011。

[38]施育宏,「利用最小方差法對二維翼型之跡流定位」,國立台灣大學碩士論文,2012。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top