跳到主要內容

臺灣博碩士論文加值系統

(3.236.28.137) 您好!臺灣時間:2021/07/25 21:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳柏均
研究生(外文):Bo-Jiun Wu
論文名稱:流致共振分析方法與風機葉片實例應用
論文名稱(外文):Methodology and Application of Flow-induced Resonance in Wind Turbine Blades
指導教授:林輝政林輝政引用關係
指導教授(外文):Huei-Jeng Lin
口試委員:宋家驥江茂雄
口試委員(外文):Jia-Ji SongMao-Xiong Jiang
口試日期:2015-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:122
中文關鍵詞:離岸型風機葉片有限元素分析模態分析馮卡門渦列渦致振動鎖定
外文關鍵詞:Offshore wind turbine bladesFinite element analysis(FEM)Modal analysisVon Karman vortex streetVortex-induced vibration(VIV)Lock-in
相關次數:
  • 被引用被引用:1
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文建立一套完整的動態流致共振分析流程,並選擇大型離岸風力發電機水平軸葉片進行實例應用探討之標的,欲提供產業界及學術界一套流致共振分析方法。
首先針對額定功率3.6MW及5MW大型風機葉片進行三維模型幾何外型之修正與繪製,並透過穩態流場分析進行額定功率計算,驗證模型之正確性。
接下來使用有限元素分析軟體COMSOL進行模態分析,先是透過模擬驗證,與文獻及理論比對,驗證本模態分析之可行性,然後才針對兩支葉片求取在不同轉速狀態下之自然頻率值,並探討其是否與操作頻率共振,且還針對5MW風機塔柱進行模態分析,探討塔柱是否會與葉片耦合。
再來同樣使用有限元素分析軟體COMSOL進行風振分析,先透過模擬驗證,與文獻比對,驗證模擬正確性,然後才針對兩支葉片各選取六個斷面,求取常態風況與極端風況之馮卡門渦列釋放頻率(風振頻率),觀察各斷面是否有與葉片產生共振之疑慮。
最後進行風振損壞判定及實例應用,參考眾多文獻,分析並觀察葉片各斷面之共振風速範圍,最後挑選兩日之每秒風速實測數據,判斷葉片是否有「風振損壞」之疑慮。

In this thesis, a complete set of process of dynamic flow-induced resonance analysis is established, through application of large-scale offshore wind turbine blades, which provides industry and academia with a set of method of flow-induced resonance analysis.
First, geometric shape of 3.6-MW and 5-MW large-scale wind turbine blades are designed, plotted. After that, steady flow field analysis is performed to calculate rated power to confirm accuracy of the model.
Second, modal analysis is performed by using finite element analysis software “COMSOL Multiphysics”. Through simulation verification, we confirm accuracy of the simulation compared with references and theory. After that, we study the natural frequency of two blades for different rotor speed, and then study if blades are resonant with operating frequency. Moreover, we perform modal analysis for 5-MW wind turbine tower, and then study if tower is coupled with blade.
Third, wind-induced vibration analysis is performed by using finite element analysis software “COMSOL Multiphysics”, too. Through simulation verification, we confirm accuracy of the simulation compared with references. After that, we choose 6 sections of each blade to calculate Von Karman vortex shedding frequency for normal wind conditions and extreme wind conditions, and then study if blades are resonant with vortex shedding frequency.
Finally, determination and application of wind-induced vibration damage is performed. Through a variety of references, we obtain the range of resonance wind speed for 6 sections of each blade. After that, we select experimental data of the wind speed per second for 2 days, determine whether there is wind-induced vibration damage on blades.

口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 xiii
第1章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 6
1.2.1 模態分析 6
1.2.2 飛機機翼之顫振分析與探討 12
1.2.3 渦致振動與鎖定現象 17
1.2.4 風機葉片之流致不穩定 24
1.2.5 風機葉片共振 28
1.2.6 相關法規 31
1.3 論文架構 31
第2章 研究方法論 33
2.1 前言 33
2.2 模態分析 34
2.3 風振分析 35
2.4 「風振損壞」之判定原則 35
2.5 研究方法架構圖 36
第3章 流致共振分析在離岸風機葉片之應用過程 38
3.1 模型建構 38
3.1.1 3.6MW風機機組 38
3.1.2 5MW風機機組 41
3.1.3 功率驗證 46
3.2 模態分析流程 49
3.2.1 邊界條件與網格建構 49
3.2.2 Vestas V47風機機組介紹與模擬驗證 52
3.2.3 小結 59
3.3 風振分析流程 60
3.3.1 流體無因次參數 60
3.3.2 層流模擬驗證 61
3.3.3 紊流模擬驗證 64
3.3.4 分析斷面選擇與問題簡化 67
3.3.5 風振模擬之所需設定及流程說明 71
3.3.6 小結 79
第4章 離岸風機葉片之流致共振分析成果與探討 81
4.1 模態分析成果 81
4.1.1 自然頻率及模態振型 81
4.1.2 操作頻率 84
4.1.3 葉片與塔柱之耦合現象探討 85
4.2 風振分析成果 88
4.2.1 3.6MW葉片 89
4.2.2 5MW葉片 95
4.2.3 5MW風機塔柱 102
4.3 風振損壞判定及應用實例 105
4.3.1 「鎖定」現象 105
4.3.2 葉片各斷面之共振風速範圍觀察 106
4.3.3 葉片整體之共振持續時間觀察 111
第5章 結論與未來展望 116
5.1 結論 116
5.2 未來展望 117
參考文獻 118

[1]牛山泉、林輝政審定, "基礎風力能源," p. 3, 2009.
[2]牛山泉、林輝政審定, "圖解風力發電入門," p. 12, 2010.
[3]ECROC, "Final report of plan for research and exploitation of new energy and clean energy," Taipei, Taiwan, 1999.
[4]齋藤勝裕、林輝政審定, "3小時讀通能源," p. 133, 2012.
[5]T. D. Corsatea, S. Giaccaria, and R. L. Arántegui, "The role of sources of finance on the development of wind technology," Renewable Energy, vol. 66, pp. 140-149, 2014.
[6]T. Y. Liu, P. J. Tavner, Y. Feng, and Y. N. Qiu, "Review of recent offshore wind power developments in china," Wind Energy, vol. 16, pp. 786-803, 2013.
[7]J. Twidell and G. Gaudiosi, "Offshore wind power," 2014.
[8]牛山泉、林輝政審定, "風車工學入門," p. 107, 2002.
[9]關和市、牛山泉、林輝政審定, "垂直軸風車," p. 105, 2011.
[10]RoadRangerX, "https://www.youtube.com/watch?v=NLInrjUtFGI," 2008.
[11]NREL, "https://www.youtube.com/watch?v=XdsC73Q-E2s," 2013.
[12]S. Larwood and C. P. Dam, "Dynamic analysis tool development for swept wind turbine blades," Wind Energy, vol. 16, pp. 879-907, 2013.
[13]F. Song, Y. Ni, and Z. Tan, "Optimization design, modeling and dynamic analysis for composite wind turbine blade," Procedia Engineering, vol. 16, pp. 369-375, 2011.
[14]S. Putter and H. Manor, "Natural frequencies of radial rotating beams," Journal of Sound and Vibration, vol. 56, pp. 175-185, 1977.
[15]A. Agneni, G. Coppotelli, and C. Grappasonni, "A method for the harmonic removal in operational modal analysis of rotating blades," Mechanical Systems and Signal Processing, vol. 27, pp. 604-618, 2012.
[16]H. S. Lim, J. T. Chung, and H. H. Yoo, "Modal analysis of a rotating multi-packet blade system," Journal of Sound and Vibration, vol. 325, pp. 513-531, 2009.
[17]G. C. Tsai, "Rotating vibration behavior of the turbine blades with different groups of blades," Journal of Sound and Vibration, vol. 271, pp. 547-575, 2004.
[18]陳精一、余仁方, "小型軸向壓縮機氣動參數變異之葉片結構分析," 第三屆中華民國振動與噪音工程學會學術研討會, 1995.
[19]黃吉宏、盧忠勇, "風扇葉片之振動特性分析與探討," 第十九屆中華民國振動與噪音工程學術研討會, 2011.
[20]蘇崑熙, "使用ANSYS之機械結構動態分析," 中原大學機械工程學系碩士論文, 2003.
[21]楊清富、林聖泉, "應用電腦輔助工程設計軟體進行負壓風扇扇葉頻率分析之研究," 臺南區農業改良場研究彙報, vol. 62, pp. 50-60, 2013.
[22]徐彬堯, "風車葉片運動模擬與動態分析," 國立成功大學航空太空工程學系碩士論文, 2005.
[23]陳品揚, "風力機葉片外型多目標最佳化設計分析," 東南科技大學機電整合研究所碩士學位論文, 2010.
[24]蔡易陞, "大型風力發電機葉片設計與分析," 國立臺灣大學碩士論文, 2014.
[25]武岳、孫瑛, "結構風振響應分析," Harbin Institute of Technology, 2000.
[26]F. Liu, J. Cai, Y. Zhu, H. Tsai, and A. F. Wong, "Calculation of wing flutter by a coupled fluid-structure method," Journal of Aircraft, vol. 38, pp. 334-342, 2001.
[27]F. Debrabandere, B. Tartinville, C. Hirsch, and G. Coussement, "Fluid-structure interaction using a modal approach," in ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, 2011, pp. 1263-1269.
[28]J. A. Luton and D. T. Mook, "Numerical simulations of flutter and its suppression by active control," AIAA journal, vol. 31, pp. 2312-2319, 1993.
[29]K. Y. Billah and R. H. Scanlan, "Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks," Am. J. Phys, vol. 59, pp. 118-124, 1991.
[30]M. Wang, "https://www.youtube.com/watch?v=owwkya_y6Yk," 2011.
[31]M. J. Chern, Y. H. Kuan, G. Nugroho, G. T. Lu, and T. L. Horng, "Direct-forcing immersed boundary modeling of vortex-induced vibration of a circular cylinder," Journal of Wind Engineering and Industrial Aerodynamics, vol. 134, pp. 109-121, 2014.
[32]E. Guilmineau and P. Queutey, "A numerical simulation of vortex shedding from an oscillating circular cylinder," Journal of Fluids and Structures, vol. 16, pp. 773-794, 2002.
[33]J. Tu, D. Zhou, Y. Bao, C. Fang, K. Zhang, C. Li, et al., "Flow-induced vibration on a circular cylinder in planar shear flow," Computers & Fluids, vol. 105, pp. 138-154, 2014.
[34]D. Brika and A. Laneville, "Vortex-induced vibrations of a long flexible circular cylinder," Journal of Fluid Mechanics, vol. 250, pp. 481-508, 1993.
[35]A. Khalak and C. Williamson, "Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping," Journal of fluids and Structures, vol. 13, pp. 813-851, 1999.
[36]D. Weaver and I. Veljkovic, "Vortex shedding and galloping of open semi-circular and parabolic cylinders in cross-flow," Journal of fluids and structures, vol. 21, pp. 65-74, 2005.
[37]G. Bir and J. Jonkman, "Aeroelastic instabilities of large offshore and onshore wind turbines," in Journal of Physics: Conference Series, 2007, p. 012069.
[38]P. Pourazarm, L. Caracoglia, M. Lackner, and Y. Modarres-Sadeghi, "Stochastic analysis of flow-induced dynamic instabilities of wind turbine blades," Journal of Wind Engineering and Industrial Aerodynamics, vol. 137, pp. 37-45, 2015.
[39]S. Venkatesh, S. Sarkar, and I. Rychlik, "Uncertainties in blade flutter damage prediction under random gust," Probabilistic Engineering Mechanics, vol. 36, pp. 45-55, 2014.
[40]S. R. Vatne, "Aeroelastic instability and flutter for a 10 MW wind turbine," 2011.
[41]C. Baxevanou, P. Chaviaropoulos, S. Voutsinas, and N. Vlachos, "Evaluation study of a Navier–Stokes CFD aeroelastic model of wind turbine airfoils in classical flutter," Journal of wind engineering and industrial aerodynamics, vol. 96, pp. 1425-1443, 2008.
[42]T. Liu, "Aeroservoelastic pitch control of stall-induced flap/lag flutter of wind turbine blade section," Shock and Vibration, vol. 2015, 2015.
[43]A. Pellegrino and C. Meskell, "Vortex shedding from a wind turbine blade section at high angles of attack," Journal of Wind Engineering and Industrial Aerodynamics, vol. 121, pp. 131-137, 2013.
[44]M. Nair and T. Sengupta, "Unsteady flow past elliptic cylinders," Journal of fluids and structures, vol. 11, pp. 555-595, 1997.
[45]A. Perry and T. Steiner, "Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 1. Vortex formation processes," Journal of fluid mechanics, vol. 174, pp. 233-270, 1987.
[46]S. G. Taylor, G. Park, K. M. Farinholt, and M. D. Todd, "Fatigue crack detection performance comparison in a composite wind turbine rotor blade," Structural Health Monitoring, vol. 12, pp. 252-262, 2013.
[47]P. Greaves, R. G. Dominy, G. L. Ingram, and H. Long, "Evaluation of dual-axis fatigue testing of large wind turbine blades," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, p. 0954406211428013, 2011.
[48]P. Malhotra, R. Hyers, J. Manwell, and J. McGowan, "A review and design study of blade testing systems for utility-scale wind turbines," Renewable and Sustainable Energy Reviews, vol. 16, pp. 284-292, 2012.
[49]D. L. White, "New method for dual-axis fatigue testing of large wind turbine blades using resonance excitation and spectral loading": Citeseer, 2004.
[50]S. Krenk, M. N. Svendsen, and J. Hgsberg, "Resonant vibration control of three-bladed wind turbine rotors," AIAA journal, vol. 50, pp. 148-161, 2012.
[51]Y. Khulief, "Vibration suppression in using active modal control," Journal of sound and vibration, vol. 242, pp. 681-699, 2001.
[52]IEC, "Wind turbine-Part 1: Design requirements, IEC 61400-1," 2005.
[53]D. Quarton, "An international design standard for offshore wind turbines : IEC 61400-3," 2005.
[54]NREL, "IEC small wind turbine standards," 2011.
[55]D. Jeroen, "Possible approaches to turbine structural design," National Renewable Energy Laboratory, 2014.
[56]皮托科技, "COMSOL Multiphysics 電腦輔助分析模擬軟體學習寶典," pp. 1-7, 2013.
[57]S. S. Rao, "Mechanical vibrations 5th edition": PEARSON, 2010.
[58]F. M. White, "Fluid Mechanics seventh edition", 2011.
[59]Siemens, "Siemens wind turbine SWT-3.6-107," 2011.
[60]J. Jonkman, S. Butterfield, W. Musial, and G. Scott, "Definition of a 5MW reference wind turbine for offshore system development," Technical Report NREL/TP-500-38060, 2009.
[61]Y. Bazilevs, M. C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, et al., "3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics," International Journal for Numerical Methods in Fluids, vol. 65, pp. 207-235, Jan 30 2011.
[62]A. Namiranian, "3D simulation of a 5MW wind turbine," Master''s Thesis, Department of Mechanical Engineering, Blekinge Institute of Technology, Karlskrona Sweden, 2011.
[63]Vestas, "Vestas 660 kW variable slip wind turbine," 2000.
[64]鄭榮和、林家緯、李盈宏、沈丞佑, "台電中彰風場風力特性評估與大型風力機組技術研究期末報告-TIS-1風機研究子計畫三:風機結構分析期末報告," 台灣電力股份有限公司, 2012.
[65]林輝政、鄭錦榮、李雅榮、鍾承憲、陳凱琳、劉二瑋、陳金汎, "台電中彰風場風力特性評估與大型風力機組技術研究子計畫六:風機葉片之逆向工程與修護評估技術之建立期末報告," 台灣電力股份有限公司, 2012.
[66]J. C. Marín, A. Barroso, F. París, and J. Cañas, "Study of fatigue damage in wind turbine blades," Engineering Failure Analysis, vol. 16, pp. 656-668, 2009.
[67]鍾承憲、吳兆誠、林勁成、何智南, "葉片用單向玻纖材料試驗規範與程序探討," 風能研討會論文, 2008.
[68]C. Kong, J. Bang, and Y. Sugiyama, "Structural investigation of composite wind turbine blade considering various load cases and fatigue life," Energy, vol. 30, pp. 2101-2114, 2005.
[69]W. Carnegie, "Vibrations of rotating cantilever blading: theoretical approaches to the frequency problem based on energy methods," ARCHIVE: Journal of Mechanical Engineering Science 1959-1982 (vols 1-23), vol. 1, pp. 235-240, 1959.
[70]L. Zhang, "Research on structural lay-up optimum design of composite wind turbine blade," Energy Procedia, vol. 14, pp. 637-642, 2012.
[71]B. G. Dehkordi, A. Niazmand, and S. Fallah, "Investigation of Harmonic Instability of Laminar Flow Fluid Past 2D Rectangular Cross Sections With 0.5-4 Aspect Ratios," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, p. 0954406213491906, 2013.
[72]蘇青和、廖慶堂, "2011年港灣海氣地象觀測資料年報," 交通部運輸研究所, 2013.
[73]L. Peng, "Analysis and design of offshore jacket wind turbine," 2010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top