跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:倪禎陽
研究生(外文):Chen-Yang Ni
論文名稱:臺灣聲學聯合海洋模式建立與臺灣東北海域水下偵測效能分析
論文名稱(外文):Establishment of Taiwan Ocean-Acoustic Joint Model and Analysis of Detection Performance Northeast off Taiwan
指導教授:陳琪芳陳琪芳引用關係
指導教授(外文):Chi-Fang Chen
口試委員:黃維信林勝豐張元櫻崔怡楓
口試委員(外文):Sheng-Fong Lin
口試日期:2015-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:82
中文關鍵詞:海洋模式臺灣東北海域音傳損耗偵測效能
外文關鍵詞:Ocean ModelNorth Men-Hua CanyonTransmission LossDetection Performance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臺灣周邊海域水文環境複雜,且於實際狀況下以研究船收集水文資料有著諸多條件限制,如何能產生大範圍的水文溫鹽資料供音傳數值模式進行大範圍的音傳損耗預估計算一直是一項挑戰,而現今海洋物理的研究上已經普遍使用海洋模式來進行海洋水文環境隨著時間變動之研究,同時海洋模式也具備著現報及預報水文資料的能力,因此本研究藉由海洋模式提供大範圍時變性溫鹽資料的能力與音傳數值進行結合,進而能夠進行大規模的音傳損耗計算及聲納效能預估。
本論文首先以工業技術研究院之臺灣附近海域現報/預報系統為基礎建置四組(HYCOM/T24/T36/Q100)不同基礎邊界條件之海洋模式,並使用海洋學門資料庫之歷史資料進行水文方根誤差分析,比較四組海洋模式之水文準確度情形,結果顯示T24海洋模式水文準確度最佳。
由於增加潮汐對於水文的影響不可忽略,於T24模式疊加上TPXO潮汐模式,並選用2009年於臺灣東北海域執行之音傳實驗資料,以實驗CTD資料、T24及TCONFS模式三種水文資料模擬的音傳損耗進行誤差比對,分別得到均方根誤差為3.25、3.83及3.28dB,結果顯示TCONFS模式能夠達到與實際量測CTD相似的準確度。
接著使用TCONFS海洋模式針對臺灣東北海域進行大範圍偵測效能模擬分析,在環境噪音主導遮蔽的假設條件下,聲納偵測效能於陸棚地形主要受到海底地形起伏的影響而變化,而於陸坡地形下主要受到不同時間下的水文剖面狀況影響,於冬季偵測效能表現較佳,夏季偵測效能表現較差。


The ocean environment around Taiwan is very complicated. It is highly limited in collecting hydrographic data with research ships. Thus ocean is always under-sampled in the study of water-column properties. Ocean circulation models are solution to this under-sample problem. We need the information of the entire water column of the area where we carry out numerical simulations of underwater acoustic propagation and sonar performance prediction. Ocean model have ability to do nowcast or forecast of hydrographic data. In this study, the goal is to establish a joint ocean and acoustic model by combining ocean model and sound propagation model to predict sonar performance in the area of interest by solving the sonar equation.
First of all, four ocean models (HYCOM/T24/T36/Q100) are established based on Taiwan Costal Ocean Nowcast/Forecast System (TCONFS) with different boundary condition. Then the root mean square error (RMSE) between historic hydrographic data of Ocean Data Bank and outputs from each ocean model are compared to estimate the accuracy each model. The results show the accuracy of T24 model is the best.
The tidal model TPXO is superposed on T24 model to better model the real ocean. The RMSE od transmission loss between the acoustic propagation experiment data and the results of sound propagation simulation using CTD data collected during the acoustic experiment, and ocean data of T24 and TCONFS model. The RMSE from these models and the acoustic data is 3.25, 3.83 and 3.28 dB respectively. In the following sonar performance calculation, the TCONFS model id used for it resembles the ocean environment most and the RMSE of the simulation data with the experimental data is compatible.
The sonar range analysis in the east-northern sea area of Taiwan is carried out with outputs of TCONFS model. Under the assumption of noise-limited condition, that predicted sonar range varies with bathymetry, and seasonal variation is clearly seen as the seasonal variation is present in the hydrographic condition.


謝誌 I
中文摘要 II
英文摘要 III
目錄 V
圖目錄 VII
表目錄 XI
第1章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.4 研究目的 5
1.5 論文架構 5
第2章 研究架構 7
2.1 臺灣附近海域現報/預報系統TCONFS 7
2.2 建置海洋模式 10
2.3 模式水文凖確度分析 11
2.4 聲納偵測效能 23
第3章 音傳損耗誤差分析 26
3.1 臺灣東北海域棉花峽谷實驗簡介[39] 26
3.2 東北海域實驗聲學資料分析 28
3.3 NTURAY基本參數設定及環境條件設定 31
3.4 水文資料輸入類別 34
3.5 最佳海洋模式分析 38
第4章 東北海域水下聲波偵測效能分析 50
4.1 模擬點位及參數設定 50
4.2 空間上之偵測效能分析 53
4.3 時間上之偵測效能分析 56
4.4 偵測距離統計分析 63
4.5 模式計算效率(時間)測試 66
第5章 結論與建議 67
5.1 結論 67
5.2 未來改進 69
參考文獻 71
附錄 A PRINCETON OCEAN MODEL (POM) 75
附錄 B NTURAY 78


1.Farmer, D., Q. Li, and J.H. Park, Internal wave observations in the South China Sea: The role of rotation and non‐linearity. Atmosphere-Ocean, 2009. 47(4): p. 267-280.
2.Jan, S., et al., Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. Journal of Geophysical Research: Oceans (1978–2012), 2007. 112(C6).
3.Jan, S., et al., Seasonal variation of the circulation in the Taiwan Strait. Journal of Marine Systems, 2002. 35(3): p. 249-268.
4.Mackenzie, K.V., Nine‐term equation for sound speed in the oceans. The Journal of the Acoustical Society of America, 1981. 70(3): p. 807-812.
5.Červený, V., M.M. Popov, and I. Pšenčík, Computation of wave fields in inhomogeneous media—Gaussian beam approach. Geophysical Journal International, 1982. 70(1): p. 109-128.
6.Collins, M.D., A self‐starter for the parabolic equation method. The Journal of the Acoustical Society of America, 1992. 92(4): p. 2069-2074.
7.Collins, M.D., A split‐step Padé solution for the parabolic equation method. The Journal of the Acoustical Society of America, 1993. 93(4): p. 1736-1742.
8.Collins, M.D., Generalization of the split‐step Padé solution. The Journal of the Acoustical Society of America, 1994. 96(1): p. 382-385.
9.Collins, M.D., et al., Comparison of algorithms for solving parabolic wave equations. The Journal of the Acoustical Society of America, 1996. 100(1): p. 178-182.
10.Etter, P.C., Underwater acoustic modeling and simulation. 2013: CRC Press.
11.Del Grosso, V.A., New equation for the speed of sound in natural waters (with comparisons to other equations). The Journal of the Acoustical Society of America, 1974. 56(4): p. 1084-1091.
12.Leroy, C.C., Development of simple equations for accurate and more realistic calculation of the speed of sound in seawater. The Journal of the Acoustical Society of America, 1969. 46(1B): p. 216-226.
13.Medwin, H., Speed of sound in water: A simple equation for realistic parameters. The Journal of the Acoustical Society of America, 1975. 58(6): p. 1318-1319.
14.Wilson, W.D., Equation for the speed of sound in sea water. The Journal of the Acoustical Society of America, 1960. 32(10): p. 1357-1357.
15.Blumberg, A.F. and G.L. Mellor, A description of a three‐dimensional coastal ocean circulation model. Three-dimensional coastal ocean models, 1987: p. 1-16.
16.廖建明, et al., POM 海洋數值模式應用於臺灣鄰近海域之洋流模擬. 2010, 交通部運輸研究所.
17.林勝豐、胡哲魁、顏志偉. 臺灣四周上層海域海流能量計算. in 第三十二屆海洋工程研討會論文集. 2010.
18.林勝豐、倪禎陽、陳琪芳. 臺灣西部海域水中聲速場即時預報系統建置. in 第16屆水下技術研討會國科會成果發表會. 2014.
19.Cheng, Y.-C., et al., STUDY AND APPLICATION OF UNDERWATER NOISE IMPACT IN COASTAL REGION OFF WESTERN TAIWAN. Journal of Computational Acoustics, 2014. 22(01): p. 1440007.
20.Lin, Y.-T., et al., Using Gaussian beam model in oceans with penetrating slope bottoms. Theoretical and Computational Acoustics 2005: Hangzhou, China, 19-22 September 2005, 2006: p. 135.
21.Porter, M.B. and H.P. Bucker, Gaussian beam tracing for computing ocean acoustic fields. The Journal of the Acoustical Society of America, 1987. 82(4): p. 1349-1359.
22.Lermusiaux, P.F., et al., Coupled ocean–acoustic prediction of transmission loss in a continental shelfbreak region: Predictive skill, uncertainty quantification, and dynamical sensitivities. IEEE Journal of Oceanic Engineering, 2010. 35(4): p. 895-916.
23.張元櫻, 臺灣東北海域之音傳損耗不確定性研究. 臺灣大學工程科學及海洋工程學研究所學位論文, 2011: p. 1-122.
24.黃成鶊, 臺灣西南及東北海域音傳損耗變動性研究. 臺灣大學工程科學及海洋工程學研究所學位論文, 2009: p. 1-104.
25.Emerson, C., et al., Acoustic propagation uncertainty and probabilistic prediction of sonar system performance in the southern East China Sea continental shelf and shelfbreak environments. 2013.
26.Urick, R.J., Principles of underwater sound for engineers. 1967: Tata McGraw-Hill Education.
27.李政恩, 海洋環境對聲納偵測效能及反潛搜索戰術之影響. 臺灣大學工程科學及海洋工程學研究所學位論文, 2006: p. 1-118.
28.苑梅俊, 淺海水域之水下音傳不確定性分析與偵測效能之研究. 臺灣大學工程科學及海洋工程學研究所學位論文, 2007: p. 1-166.
29.苑梅俊, 海洋環境不確定性對水下聲場之誤差傳遞分析研究, 國科會計畫結案報告, Editor. 2010, 美和科技大學資訊管理系.
30.苑梅俊, 張元櫻, and 陳琪芳, 南海海域海洋環境與聲納偵測距離特性分析. 海軍軍官季刊, 2005. 24: p. 22-28.
31.Phillips, N.A., A coordinate system having some special advantages for numerical forecasting. Journal of Meteorology, 1957. 14(2): p. 184-185.
32.Ocean Data Bank of the Ministry of Science and Technology, Republic of China (http://www.odb.ntu.edu.tw/).
33.Metzger, E.J., et al., The Switchover from NOGAPS to NAVGEM 1.1 Atmospheric Forcing in GOFS and ACNFS. 2013, DTIC Document.
34.Bleck, R., An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean modelling, 2002. 4(1): p. 55-88.
35.Egbert, G.D. and S.Y. Erofeeva, Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 2002. 19(2): p. 183-204.
36.Chapman, D.C., D.-S. Ko, and R.H. Preller, A high-resolution numerical modeling study of the subtidal circulation in the Northern South China Sea. Oceanic Engineering, IEEE Journal of, 2004. 29(4): p. 1087-1104.
37.Hsueh, Y., J. Wang, and C.S. Chern, The intrusion of the Kuroshio across the continental shelf northeast of Taiwan. Journal of Geophysical Research: Oceans (1978–2012), 1992. 97(C9): p. 14323-14330.
38.Urick, R.J., Principles of underwater sound. 1983.
39.陳琪芳, 臺灣周邊海域(東北)水下偵測整合計畫-總計畫, 國防科技學術合作研究計畫成果報告, Editor. 2010, 國立臺灣大學工程科學及海洋工程學系.
40.Hamilton, E.L., Sound velocity as a function of depth in marine sediments. The Journal of the Acoustical Society of America, 1985. 78(4): p. 1348-1355.
41.Harrison, C. and J. Harrison, A simple relationship between frequency and range averages for broadband sonar. The Journal of the Acoustical Society of America, 1995. 97(2): p. 1314-1317.
42.湛翔智, 臺灣鄰近海域環境噪音之資料分析及數值模擬. 臺灣大學工程科學及海洋工程學研究所學位論文, 2007: p. 1-166.
43.Abbot, P. and I. Dyer, Sonar performance predictions incorporating environmental variability, in Impact of Littoral Environmental Variability of Acoustic Predictions and Sonar Performance. 2002, Springer. p. 611-618.
44.Mellor, G.L. and T. Yamada, A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences, 1974. 31(7): p. 1791-1806.
45.Mellor, G.L., Analytic prediction of the properties of stratified planetary surface layers. Journal of the Atmospheric Sciences, 1973. 30(6): p. 1061-1069.
46.陳琪芳, 高頻主動聲納效能分析研究(II), 科技部國防科技發展方案學術合作研究計畫期末報告, Editor. 1998, 國立臺灣大學工程科學及海洋工程學系.
47.Hildebrand, F.B., Advanced calculus for applications. Vol. 63. 1962: Prentice-Hall Englewood Cliffs, NJ.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top