跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 10:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉原亨
研究生(外文):Yuan-Heng Liu
論文名稱:4H-SiC 接面位障蕭基二極體製作
論文名稱(外文):Fabrication of 4H-SiC Junction Barrier Schottky Diode
指導教授:李坤彥
指導教授(外文):Kung-Yen Lee
口試委員:黃智方李佳翰胡振國
口試委員(外文):Chih-Fang Huang
口試日期:2015-07-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:87
中文關鍵詞:4H-SiC接面位障蕭基二極體(JBS)蕭基二極體(SBD)P+離子佈植圖形蕭基位障
外文關鍵詞:4H-SiCJBSSBDP+ implant patterns and Schottky barrier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是使用碳化矽基板4H-SiC製作改良圖形後的高電壓接面位障蕭基二極體元件(Junction barrier Schottky diode, JBS)。JBS元件在順向操作時,其導通的時候有蕭基二極體(SBD)的低導通電壓及切換速度高的優點;而在逆向偏壓時,能利用PN接面形成的空乏區夾住通道,使逆向漏電流很小,因此有如PN二極體低漏電、高崩潰電壓的優點。
為了將元件有更好的順逆向電流、電壓特性表現,本論文設計了多種不同的P+離子佈植圖形以及比例:同心圓、片段式同心圓、長條形、片段式長條形、方形陣列等,並改良之前學長的圖形,將方形點的邊緣修改得更為圓滑,以減少尖端電荷容易造成電場崩潰,除了圖形的不同,還有加上不同的P+佈植間距,而創造出不同面積比例的蕭基接面,並比較不同設計對其順向導通電壓、電流密度、逆向元件漏電流、崩潰電壓的影響。
製作完成後,依量測結果判斷,相較於同心圓,片段式的同心圓會有比較高的蕭基接面面積比例,因而有比較好的順向電流、電壓特性表現,並且在高溫順向操作時有較小的順向導通電壓偏移量;而經過量測發現,當元件P+佈植間距小於8 ,逆向偏壓操作時PN接面形成的空乏區能將通道夾住,會有較好的漏電流與崩潰電壓表現。



目錄

誌謝 i
中文摘要 ii
Abstract iii
目錄 iiv
圖目錄 v
表目錄 vi
第一章 序論 1
1.1前言 1
1.2碳化矽的材料特性 1
1.3研究動機與研究大綱 3
1.4論文架構 6
第二章 元件基本結構原理 7
2.1蕭基二極體原理特性 7
2.2 PN二極體特性 13
2.3接面位障蕭基二極體 15
2.4邊緣終端保護結構 17
2.4.1 簡介與原理 17
2.4.2 邊緣終端保護結構種類 19
第三章 光罩設計與元件製程 21
3.1 光罩設計 21
3.2 元件製程 25
3.2.1 實驗光罩流程 25
3.2.2 碳化矽基板參數 28
3.2.3 實驗製程步驟 28
第四章 元件模擬與實驗結果討論 46
4.1 JBS元件電性模擬 46
4.2 元件實際順向偏壓特性分析 57
4.2.1 SBD順向偏壓特性 57
4.2.2 PiN順向偏壓特性 60
4.2.3 SBD、JBS同心圓4:4、PiN順向偏壓特性比較 62
4.2.4 JBS同心圓順向偏壓特性比較 63
4.2.5 JBS方形陣列順向偏壓特性比較 66
4.2.6 JBS其他圖形順向偏壓特性比較 69
4.3 元件實際高溫順向偏壓特性分析 71
4.3.1 SBD高溫順向偏壓特性 71
4.3.2 PiN高溫順向偏壓特性 73
4.3.3 JBS同心圓、方形陣列高溫順向偏壓特性 75
4.4 元件實際逆向偏壓特性分析 77
4.4.1 SBD、JBS同心圓4:4、PiN逆向偏壓特性比較 77
4.4.2 JBS同心圓逆向偏壓特性 78
4.4.3 JBS方形陣列逆向偏壓特性 79
4.4.4 JBS其他圖形逆向偏壓特性 80
4.5 SBD接面電容特性分析 81
第五章 結論與未來展望 84
參考文獻 85



[1]T. Kimoto, "SiC technologies for future energy electronics," in VLSI Technology (VLSIT), pp. 9-14, 2010.
[2]鄭晃忠、劉傳璽, "新世代積體電路製程技術" 2011。
[3]H. S. Lee, "High power bipolar Junction Transistor in Silicon Carbide," 2005.
[4]羅正忠、李嘉平、鄭湘原, "半導體工程-先進製程與模擬" 2011。
[5]C. E. Weitzel, J. W. Palmour, C. H. Carter, Jr., K. Moore, K. J. Nordquist, S. Allen, et al., "Silicon carbide high-power devices," Electron Devices, IEEE Transactions on, vol. 43, pp. 1732-1741, 1996.
[6]J. H. Zhao, P. Alexandrov, and X. Li, "Demonstration of the first 10-kV 4H-SiC Schottky barrier diodes," Electron Device Letters, IEEE, vol. 24, pp. 402-404, 2003.
[7]Z. Lin, T. P. Chow, K. A. Jones, and A. Agarwal, "Design, fabrication, and characterization of low forward drop, low leakage, 1-kV 4H-SiC JBS rectifiers," Electron Devices, IEEE Transactions on, vol. 53, pp. 363-368, 2006.
[8]L. Zhiyun, C. Tianbing, J. D. Cressler, D. C. Sheridan, J. R. Williams, R. A. Reed, et al., "Impact of proton irradiation on the static and dynamic characteristics of high-voltage 4H-SiC JBS switching diodes," Nuclear Science, IEEE Transactions on, vol. 50, pp. 1821-1826, 2003.
[9]S. Tian, "Monte Carlo Simulation of Ion Implantation in Crystalline SiC With Arbitrary Polytypes," Electron Devices, IEEE Transactions on, vol. 55, pp. 1991-1996, 2008.
[10]R. Perez, N. Mestres, D. Tournier, P. Godignon, and J. Millan, "Ni/Ti ohmic and Schottky contacts on 4H-SiC formed with a single thermal treatment," Diamond and Related Materials, vol. 14, pp. 1146-1149, 2005.
[11]B. A. Hull, J. J. Sumakeris, M. J. O''Loughlin, Z. Qingchun, J. Richmond, A. R. Powell, et al., "Performance and Stability of Large-Area 4H-SiC 10-kV Junction Barrier Schottky Rectifiers," Electron Devices, IEEE Transactions on, vol. 55, pp. 1864-1870, 2008.
[12]E. A. Ray, J. Rozen, S. Dhar, L. C. Feldman, and J. R. Williams, "Pressure dependence of SiO2 growth kinetics and electrical properties on SiC," Journal of Applied Physics, vol. 103, pp. -, 2008.
[13]G. Feng, J. Suda, and T. Kimoto, "Space-Modulated Junction Termination Extension for Ultrahigh-Voltage p-i-n Diodes in 4H-SiC," Electron Devices, IEEE Transactions on, vol. 59, pp. 414-418, 2012.
[14]D. Perrone, M. Naretto, S. Ferrero, L. Scaltrito, and C. F. Pirri, "4H-SiC Schottky Barrier Diodes Using Mo-, Ti- and Ni-Based Contacts," Materials Science Forum, Vols. 615-617, pp 647-650, 2009.
[15]R. Perez, N. Mestres, M. Vellvehi, P. Godignon, and J. Millan, "Analysis of 1.2 kV JBS rectifiers fabricated in 4H-SiC," Semicond. Sci. Technol, Vols. 21, pp 670-676, 2006.
[16]A. Itoh, and H. Matsunami, "Analysis of Schottky Barrier Heights of Metal/SiC Contacts and Its Possible Application to High-Voltage Rectifying Devices," Phys. Stat. Sol, Vols. 162, pp 389-408, 1997.
[17]P. Alexandrov, W. Wright, M. Pan, M. Weiner, L. Jiao, and J. H. Zhao, "Demonstration of high voltage (600–1300 V), high current (10–140 A), fast recovery 4H-SiC p-i-n/Schottky(MPS) barrier diodes," Solid-State Electronics, vol. 47, pp. 263-269, 2003.
[18]L. Zhang, Y. M. Zhang, Y. M. Zhang, C. Han, and Y. J. Ma, "High energy electron radiation effect on Ni and Ti/4H-SiC Schottky barrier diodes at room temperature," Chinese Phys. B, Vols. 18, No. 5, pp 1931–1934, 2009.
[19]T. Ayalew, S. C. Kim, T. Grasser, and S. Selberherr, "Numerical Analysis of SiC Merged PiN Schottky Diodes," Materials Science Forum, Vols. 483-485, pp 949-952, 2005.
[20]X. Jorda, D. Tournier, J. Rebollo, J. Millan, and P. Godignon, "Temperature Impact on High-Current 1.2kV SiC Schottky Rectifiers," Materials Science Forum, Vols. 483-485, pp 929-932, 2005.
[21]T. Ayalew, "SiC Semiconductor Devices Technology, Modeling, and Simulation," 2004.
[22]R. Ghandi, B. Buono, M. Domeij, G. Malm, C. M. Zetterling, and M. Ostling, "High-Voltage 4H-SiC PiN Diodes With Etched Junction Termination Extension," Electron Device Letters, IEEE, vol. 30, pp. 1170-1172, 2009.
[23]J. H. Huang, H. L. Lu, Y. M. Zhang, Y. M. Zhan, X. Y. Tang, F. P. Chen and Q. W. Song, "Simulation study of a mixed terminal structure for 4H-SiC merged PiN/Schottky diode," Chinese Phys. B, Vols. 20, No. 11, 118401, 2011.
[24]F. P. Chen, Y. M. Zhang, H. L. Lu, Y. M. Zhang and J. H. Huang, "Study of 4H-SiC junction barrier Schottky diode using field guard ring termination," Chinese Phys. B, Vols. 19, No. 9, 097107, 2010.
[25]F. P. Chen, Y. M. Zhang, Y. M. Zhang, H. L. Lu and Q. W. Song, "Simulation research on offset field-plate used as edge termination in 4H-SiC merged PiN-Schottky diodes," Chinese Phys. B, Vols. 19, No. 4, 047305, 2010.
[26]H. Niwa, F. Gan, J. Suda, and T. Kimoto, "Breakdown Characteristics of 15-kV-Class 4H-SiC PiN Diodes With Various Junction Termination Structures," Electron Devices, IEEE Transactions on, vol. 59, pp. 2748-2752, 2012.
[27]B. J. Baliga, "Fundamentals of Power Semiconductor Devices," 2008.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top