跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘郁婷
研究生(外文):Yu-Ting Pan
論文名稱:導波應用於離岸風機基樁之基礎研究
論文名稱(外文):Basic research of applying the guided wave to the foundation piles of offshore wind turbines
指導教授:宋家驥宋家驥引用關係
指導教授(外文):Chia-Chi Sung
口試委員:黃心豪楊旭光羅如燕
口試委員(外文):Hsin-Haou HuangHsu-Kuang YangJu-Yan luo
口試日期:2015-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:93
中文關鍵詞:導波法超音波換能器離岸風機基樁頻散曲線圖PCdisp
外文關鍵詞:Guided wave methodUltrasonic transducersOffshore wind turbineFoundation pilesdispersion curvePCdisp
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因離岸風力發電機(簡稱風機)身處大海,其海床表面下的樁柱基礎在受自身振動、海洋動力(波浪及海流)、或地震等外力作用後,樁柱與海床砂石之固著程度可能改變,而其固著的緊密情況將影響到風機的穩定度。因此水中樁柱有必要做定期的檢測,而導波法具有長距離傳遞且能量不易衰減的特性,入射於管線上傳遞,可擴大管線檢測範圍,故本研究以超音波換能器所致之導波法來對樁柱結構上的特性評估、規劃、設計並開發一套有效的非破壞性檢測方法及設備,對樁柱基礎做定期的評估。
因此在本研究中,將風力發電機的基樁先簡化以單一鋼管為模型代表,先建立一套導波檢測之方法,以PCdisp繪出頻散曲線圖後,找出合適之入射模態及角度,架設超音波換能器以調整入射角度至最佳狀況後,因需探討基樁位於海床中之固著程度改變與表面腐蝕的情形,故以包覆實驗模擬基樁周圍土層之包覆情形,及以人工腐蝕的方式模擬基樁表面受到腐蝕,再以所建立的導波方法進行檢測,並討論及歸納出其底部回波訊號改變之規則,以提供現場檢測人員分析訊號結果之依據,並可達到基樁結構維護監測之目的。


As offshore wind turbines are located in the sea, column foundation piles under the surface of the seabed which are affected by vibration, ocean power (waves and currents), earthquakes and other external forces, might affect the firmness between the foundation piles and the seabed. This will in turn affect the stability of the offshore wind turbine. Therefore, regular maintenance of the piles is very important. Since the guided wave method has long-range energy transmission and does not lose energy easily, when we use pipeline to transmit, the pipeline detection range would be greater. In this study, we will be using the ultrasonic transducer to make the guided wave method so as to assess the characteristics of the column on the surface. After which, we will start to plan, design and develop testing equipment and methods which are safe and effective in order to conduct regular assessments of the piles’ foundation.
In this study, the foundation piles will be replaced by a single steel pipe as a model represent. PCdisp will be used to draw the dispersion curve to find the suitable mode and angle. After setting up the ultrasonic transducer and adjusting it to the best settings, we will explore the firmness between the foundation piles, the seabed and the corrosion of the surface. We will then be able to design a coated experiment to simulate the coated situation, and also an artificial corrosion experiment to simulate the corrosion. By applying the guided wave method, we will analyze and judge the structural condition of the surface so as to achieve the purpose of this study.


致謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 XI
第1章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 4
1.3 論文架構 8
第2章 背景理論 10
2.1 導波於圓管中傳遞之波動方程式 10
2.1.1 縱向模態 15
2.1.2 扭矩模態 15
2.1.3 撓曲模態 16
2.2 頻散曲線 17
2.3 折射定律 18
2.4 壓電原理 20
2.4.1 壓電效應 20
2.4.2 壓電方程式 22
2.4.3 超音波換能器結構與研製 24
第3章 選擇導波傳遞模式 28
3.1 繪製頻散曲線圖 28
3.2 計算換能器入射角度 32
3.3 換能器入射模態之傳遞路徑模擬 33
第4章 實驗架構與量測方法 37
4.1 實驗設備 37
4.2 換能器靈敏度 42
4.3 導波入射角度之量測與驗證 45
4.3.1 實驗架構 45
4.3.2 導波入射角度驗證 47
4.4 包覆實驗量測 55
4.4.1 包覆刻度定義 55
4.4.2 包覆實驗量測架構 56
4.5 腐蝕實驗量測 58
4.5.1 腐蝕原理 59
4.5.2 腐蝕實驗量測架構 61
第5章 結果與討論 63
5.1 不同包覆層數及鬆緊度對於管柱底部回波之影響 63
5.1.1 包覆一層之底部回波訊號 64
5.1.2 包覆二層之底部回波訊號 66
5.1.3 包覆三層之底部回波訊號 68
5.1.4 比較不同包覆層數及鬆緊度間之差異 71
5.2 不同腐蝕程度對於管柱底部回波之影響 71
5.2.1 腐蝕程度之量測 72
5.2.2 管柱底部回波訊號 75
第6章 結論與未來展望 81
6.1 結論 81
6.2 未來展望 83
參考文獻 84
附錄 87


[1]W. deVries, J. Van der Tempel, H. Carstens, K. Argyriadis, P. Passon, T. Camp, et al., "Assessment of bottom-mounted support structure types with conventional design stiffness and installation techniques for typical deep-water sites," Deliverable Report D, vol. 4, 2007.
[2]H. J. Shin and J. L. Rose, "Guided wave tuning principles for defect detection in tubing," Journal of nondestructive evaluation, vol. 17, pp. 27-36, 1998.
[3]J. L. Rose and L. E. Soley, "Ultrasonic guided waves for anomaly detection in aircraft components," Materials Evaluation, vol. 58, pp. 1080-1086, 2000.
[4]W.-B. Na, T. Kundu, and Y.-S. Ryu, "Underwater inspection of concrete-filled steel pipes using guided waves," KSCE Journal of Civil Engineering, vol. 6, pp. 25-31, 2002.
[5]M. D. Beard, "Guided wave inspection of embedded cylindrical structures," University of London, 2002.
[6]J. L. Rose, "Boundary element modeling for defect characterization potential in a wave guide," International Journal of Solids and Structures, vol. 40, pp. 2645-2658, 2003.
[7]M. Siqueira, C. Gatts, R. Da Silva, and J. Rebello, "The use of ultrasonic guided waves and wavelets analysis in pipe inspection," Ultrasonics, vol. 41, pp. 785-797, 2004.
[8]J.-W. Cheng, S.-K. Yang, and B.-H. Li, "Torsional guided wave attenuation in buried pipe," Materials evaluation, vol. 64, pp. 412-416, 2006.
[9]F. Chati, F. Léon, M. El Moussaoui, A. Klauson, and G. Maze, "Longitudinal mode L(0,4) used for the determination of the deposit width on the wall of a pipe," NDT & E International, vol. 44, pp. 188-194, 3// 2011.
[10]R. Ahmad and T. Kundu, "Cylindrical guided wave signals for underground pipe inspection using different continuous wavelet mother functions," Journal of Civil Engineering and Architecture, vol. 5, pp. 1103-1110, 2011.
[11]G. S. Mavi, "Feasibility of using ultrasonic guided waves for under water pipe inspection," Thapar University Patiala, 2013.
[12]J. McFadden, "Radial vibrations of thick‐walled hollow cylinders," The Journal of the Acoustical Society of America, vol. 26, pp. 714-715, 1954.
[13]P. Naghdi and R. Cooper, "Propagation of elastic waves in cylindrical shells, including the effects of transverse shear and rotatory inertia," The Journal of the Acoustical Society of America, vol. 28, pp. 56-63, 1956.
[14]D. Worlton, "Ultrasonic testing with lamb waves," General Electric Co., Hanford Atomic Products Operation, Richland, Wash.1956.
[15]D. C. Gazis, "Three‐dimensional investigation of the propagation of waves in hollow circular cylinders. II. Numerical Results," The Journal of the Acoustical Society of America, vol. 31, pp. 573-578, 1959.
[16]J. L. Rose, Ultrasonic waves in solid media: Cambridge university press, 1999.
[17]M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables: Courier Corporation, 1964.
[18]F. Seco and A. R. Jiménez, Modelling the generation and propagation of ultrasonic signals in cylindrical waveguides: INTECH Open Access Publisher, 2008.
[19]M. Silk and K. Bainton, "The propagation in metal tubing of ultrasonic wave modes equivalent to Lamb waves," Ultrasonics, vol. 17, pp. 11-19, 1979.
[20]葉展嘉, "應用導波於埋地管線檢測之研究," 國立中山大學 機械與機電工程學系碩士論文, 2012.
[21]D. N. Alleyne and P. Cawley, "Optimization of Lamb wave inspection techniques," Ndt & E International, vol. 25, pp. 11-22, 1992.
[22]朱雅雯, "超音波壓電換能器多層匹配結構之研析," 臺灣大學工程科學及海洋工程學碩士論文, pp. p. 1-87, 2005.
[23]F. Seco, J. M. Martín, A. Jiménez, J. L. Pons, L. Calderón, and R. Ceres, "PCDISP: a tool for the simulation of wave propagation in cylindrical waveguides," in 9th International Congress on Sound and Vibration, 2002.
[24]X. Dingguo, et al., "Measurement of ultrasonic transducer sensitivity.," Mechatronics and Automation (ICMA), 2012 International Conference, 2012.
[25]A. L. Lopez-Sanchez and L. W. Schmerr Jr, "Determination of an ultrasonic transducer''s sensitivity and impedance in a pulse-echo setup," Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, vol. 53, pp. 2101-2112, 2006.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top