跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/05 20:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠宇
研究生(外文):Edward Chen
論文名稱:自主式水下載具技術於海床分類及海纜路由調查之應用
論文名稱(外文):Application of AUV Technology in Seafloor Classification and Submarine Cable Route Design
指導教授:郭振華郭振華引用關係
指導教授(外文):Jen-Hwa Guo
口試委員:邱逢琛江茂雄楊穎堅張淑淨楊文昌
口試日期:2015-06-18
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:130
中文關鍵詞:自主式水下載具觀測性操控間接式即時定位與建圖聲納掃描線佔格模型海底電纜路由設計機率式路線圖A星演算法
外文關鍵詞:AUVobservability-based maneuveringindirect SLAMsonar scanlinesoccupancy gridSubmarine cable route designprobabilistic roadmapA-star algorithms
相關次數:
  • 被引用被引用:1
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以自行發展、近即時(Real-Time)的聲納資料自動處理、判釋與路線決策技術結合自主式水下載具(Autonomous Underwater Vehicle;AUV),來準確、快速且自動地繪製出待測海域內可行的海纜舖設路由,作為後續細部調查與路徑規劃的重要參考依據,對於未來海纜建設工作的執行與推動有著實質效益上的直接助益。此外,本研究提出了一種相異於傳統聲納資料處理方式的方法與程序,以處理聲納掃描線取代聲納影像分析的概念與建構並應用網格圖方式來替代傳統習慣採用的直觀式特徵物地圖的作法,不僅實現了聲納資料近即時化處理與分析也同時有效的提高了以聲納執行水下載具導航的可靠度。本研究所發展的技術程序分為三個階段:首先使用以卡曼濾波器為基礎所衍生之間接式即時定位與地圖建立的方法,藉由監控觀測性與估測慣性導航儀誤差狀態來回授修正以提高自主式水下載具導航的精確度;接著以聲納掃描線利用佔格模型來建置網格圖,並以樸素貝氏分類器的三個特徵函數來偵測與定義海床目標物的位置,並完成海床型態分類;最後利用機率式路線圖與A星演算法在考量海纜路由上海纜長度、海床型態、轉點角度、海床坡度與高程變化等設計五大決策因子條件下,於計畫的勘測廊道內自行初步劃定一條可能的舖設路徑,以作為後續細部調查與路徑規劃的重要參考依據。

This study proposes an automated method for submarine cable route design from sonar scanlines collected by an autonomous underwater vehicle (AUV). Traditionally, the route design is carrying out by experienced surveyors and engineers using seafloor survey data. In the work, an automated classification and route planning method using real time data gathered by an AUV is developed to improve the efficiency for submarine cable construction. Firstly, to improve the accuracy of AUV localization, a linear time-varying equation is applied to describe the motion of an AUV that enables the utilization of observability analysis for maneuvering accuracy. Observability is a property in linear system which related to the initial state and the system outputs. An observability-based maneuvering planner is proposed to enhance the vehicle state estimation. Simulation results demonstrated that unobservable modes can be controlled through maneuvering and will affect the accuracy of vehicle state estimaton. Secondly, a novel idea using sonar scanlines and grid-based maps is introduced to map the seafloor for classification. A probabilistic classifier based on Bayes'' theorem and Naïve assumption is applied to distinguish the types of seafloor. A node map is constructed by probabilistic roadmap and then an A-star algorithm is applied to determine appropriate cable routes on a corridor from the node map. Seafloor classification, bathymetry, steep slope, angle of alter course, and cable length are five factors of the A-star algorithm. A field result of a case of the cable route survey between islands was demonstrated. The planned route using the proposed method is close in range to the one recommend by experts. The proposed cable route design method costs less to the one performed by experienced engineers, and therefore is advantageous for the budget saving of the submarine construction.

致 謝 I
摘 要 III
英文摘要(Abstract) V
目 錄 VII
表 目 錄 XV
符 號 列 表 XVII
第一章 緒 論 1
1-1 前 言 1
1-2 文獻回顧 4
1-3 論文架構 17
第二章 觀測性載具操控 19
2-1 載具觀測模型 20
2-2 觀測性模型 25
2-3 操控模擬 32
2-3-1 操控環境模擬 32
2-3-2 載具運動模式操控模擬 34
第三章 聲納資料網格式地圖建置 49
3-1 聲納資料處理與應用 50
3-1-1 聲納資料前置處理 50
3-1-2 聲納資料目標物偵測 52
3-2 目標物偵測與定位 60
3-3 佔格模型建圖理論 67
3-3-1 佔格模型建圖 67
3-3-2 逆向量測模型 70
3-4 實驗與說明 80
第四章 海床分類與海纜路徑規劃 93
4-1 海床分類地圖建置 94
4-2 路線地圖建置理論與路徑規劃 97
4-2-1 機率式路線地圖建置 97
4-2-2 代價函數與A星演算法 99
4-3 實驗與說明 109
第五章 結論與展望 119
參考文獻 121


[1]鄭勝文、邱逢琛、蔡進發、郭振華(1998),自主式水下載具整合型研究計畫成果報導,國科會科學發展月刊,第6-20頁。
[2]George, R. A., Gee, L. A., Hill, A. W., Thomson, J. A., & Jeanjean, P. (2002, January). High-Resolution AUV Surveys of the Eastern Sigsbee Escarpment. In Offshore Technology Conference.
[3]Henthorn, R., Caress, D. W., Thomas, H., McEwen, R., Kirkwood, W. J., Paull, C. K., & Keaten, R. (2006, September). High-Resolution Multibeam and Subbottom Surveys of Submarine Canyons, Deep-Sea Fan Channels, and Gas Seeps Using the MBARI Mapping AUV. In MTS/IEEE OCEANS 2006 (Boston) Conference Proceedings, pp. 1-6, IEEE.
[4]Dupré, S., Buffet, G., Mascle, J., Foucher, J. P., Gauger, S., Boetius, A., ... & Quest ROV Team. (2008). High-Resolution Mapping of Large Gas Emitting Mud Volcanoes on the Egyptian Continental Margin (Nile Deep Sea Fan) by AUV Surveys. Marine Geophysical Researches, 29(4), pp. 275-290.
[5]Thorleifson, J. M., Davies, L. T., Black, M. R., Hopkin, D. A., Verrall, R. I., Pope, A., ... & Butler, B. (1997, October). The Theseus Autonomous Underwater Vehicle. A Canadian Success Story. In MTS/IEEE OCEANS 1997 (Halifax) Conference Proceedings, Vol. 2, pp. 1001-1006, IEEE.
[6]Kojima, J., Kato, Y., Asakawa, K., Matumoto, S., Takagi, S., & Kato, N. (1997, October). Development of Autonomous Underwater Vehicle ‘AQUA EXPLORER 2’ for Inspection of Underwater Cables. In MTS/IEEE OCEANS 1997 (Halifax) Conference Proceedings, Vol. 2, pp. 1007-1012, IEEE.
[7]Asai, T., Kojima, J., & Iso, T. (2000). Inspection of Submarine Cable of over 400 km by AUV. In Underwater Technology, 2000. UT 00. Proceedings of the 2000 International Symposium, pp. 133-135, IEEE.
[8]Woodrow, I., Purry, C., Mawby, A., & Goodwin, J. (2005, August). Autonomous AUV Mission Planning and Replanning - Towards True Autonomy. In Proc. 14th International Symposium on Unmanned Untethered Submersible Technology.
[9]SWATHplus website, on http://www.sea.co.uk/swathplus.aspx?nav=products
[10]Geen, M. F. (2007, June). Advances in Marine Survey Products and Platforms. In MTS/IEEE OCEANS 2007 (Europe) Conference Proceedings, pp. 1-6, IEEE.
[11]Paul, J., & Alain, P. (2005, May). State of the Art in Offshore Cable Route Survey. In The GEOLINE 2005 International Symposium, Lyon, France.
[12]Jiang, Y. F., & Lin, Y. P. (1992). Error Estimation of INS Ground Alignment through Observability Analysis. Aerospace and Electronic Systems, IEEE Transactions on, 28(1), pp. 92-97, IEEE.
[13]Yang, C. K., & Shim, D. S. (2013). Analysis of the Effect of Time Delay on the Integrated GNSS/INS Navigation Systems. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 7(2).
[14]Williams, S., Dissanayake, G., & Durrant-Whyte, H. (2001). Towards Terrain-Aided Navigation for Underwater Robotics. Advanced Robotics, 15(5), pp. 533-549.
[15]Kim, J. H., & Sukkarieh, S. (2003, September). Airborne Simultaneous Localisation and Map Building. In Robotics and Automation, 2003. Proceedings. ICRA''03. IEEE International Conference, Vol. 1, pp. 406-411, IEEE.
[16]Kim, J., & Sukkarieh, S. (2004). Autonomous Airborne Navigation in Unknown Terrain Eenvironments. Aerospace and Electronic Systems, IEEE Transactions on, 40(3), pp. 1031-1045, IEEE.
[17]Kim, J., & Sukkarieh, S. (2004, December). SLAM Aided GPS/INS Navigation in GPS Denied and Uunknown Environments. In The 2004 International Symposium on GNSS/GPS, Vol. 4.
[18]Bar-Itzhack, D. G. M. I. (1992). Observability Analysis of Piece-Wise Constant Systems-Part 1: Theory. IEEE Trans. on Aerospace and Electronic Systems, 28(4), pp. 1056-1068, IEEE.
[19]Bar-Itzhack, D. G. M. I. (1992). Observability Analysis of Piece-Wise Constant Systems-Part 1: Theory. IEEE Trans. on Aerospace and Electronic Systems, 28(4), pp. 1056-1068, IEEE.
[20]Rhee, I., Abdel-Hafez, M. F., & Speyer, J. L. (2004). Observability of an Integrated GPS/INS during Maneuvers. Aerospace and Electronic Systems, IEEE Transactions on, 40(2), pp. 526-535, IEEE.
[21]Hong, S., Lee, M. H., Chun, H. H., Kwon, S. H., & Speyer, J. L. (2005). Observability of Error States in GPS/INS Integration. Vehicular Technology, IEEE Transactions on, 54(2), pp. 731-743, IEEE.
[22]Kim, J., & Sukkarieh, S. (2004, October). Improving the Real-Time Efficiency of Inertial SLAM and Understanding its Observability. In Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference, Vol. 1, pp. 21-26, IEEE.
[23]Bryson, M., & Sukkarieh, S. (2008). Observability Analysis and Active Control for Airborne SLAM. Aerospace and Electronic Systems, IEEE Transactions on, 44(1), pp. 261-280, IEEE.
[24]Crasta, N., Bayat, M., Aguiar, A. P., & Pascoal, A. M. (2014, August). Observability Analysis of 3D AUV Trimming Trajectories in the Presence of Ocean Currents Using Single Beacon Navigation. In Proc. of IFAC World Congress, Cape Town, South Africa.
[25]Fish, J. P., & Carr, H. A. (1990). Sound Underwater Images: A Guide to the Generation and Interpretation of Side Scan Sonar Data. Lower Cape Pub Co.
[26]Mazel, C. (1985). Side Scan Sonar Record Interpretation, Klein Associates Inc.
[27]Bell, J. M., & Linnett, L. M. (1997, August). Simulation and Analysis of Synthetic Sidescan Sonar Images. In Radar, Sonar and Navigation, IEE Proceedings, 144(4), pp. 219-226, IET.
[28]Lurton, X. (2002). An Introduction to Underwater Acoustics. Principles and Applications, London, Springer.
[29]Medwin, H. (1975). Speed of Sound in Water: A Simple Equation for Realistic Parameters. The Journal of the Acoustical Society of America, 58(6), pp. 1318-1319.
[30]Chen, C. T., & Millero, F. J. (1977). Speed of Sound in Seawater at High Pressures. The Journal of the Acoustical Society of America, 62(5), pp. 1129-1135.
[31]Jiang, Q., Wang, S., Ziou, D., El Zaart, A., Benie, G. B., Rey, M. T., & Henschel, M. (1998, October). Ship Detection in RADARSAT SAR Imagery. In IEEE INTERNATIONAL CONFERENCE ON SYSTEMS MAN AND CYBERNETICS, Vol. 5, pp. 4562-4566, INSTITUTE OF ELECTRICAL ENGINEERS INC, IEEE.
[32]Dunlop, J. (1997, October). Statistical Modelling of Sidescan Sonar Images. In MTS/IEEE OCEANS 1997 (Halifax) Conference Proceedings, Vol. 1, pp. 33-38, IEEE.
[33]Gordon, S. D., & Ritcey, J. A. (1995, August). Calculating the K-distribution by Saddlepoint Integration. In Radar, Sonar and Navigation, IEE Proceedings, 142(4), pp. 162-166, IET.
[34]Patzold, M. (2002, June). Mobile Fading Channels, Wiley.
[35]Tsui, P., Huang, C., & Wang, S. (2006). Use of Nakagami Distribution and Logarithmic Compression in Ultrasonic Tissue Characterization. Journal of Medical and Biological Engineering, 26(2), pp. 69.
[36]Rohling, H. (1983). Radar CFAR Thresholding in Clutter and Multiple Target Situations. Aerospace and Electronic Systems, IEEE Transactions, Vol. 4, pp. 608-621, IEEE.
[37]Gandhi, P. P., & Kassam, S. A. (1988). Analysis of CFAR Processors in Homogeneous Background. Aerospace and Electronic Systems, IEEE Transactions, 24(4), pp. 427-445, IEEE.
[38]Kim, H. G., Song, I., Kim, S. Y., Lee, J. H., & Kim, S. C. (1999). Adaptive Code Acquisition Using a GO-CFAR Processor in DS/CDMA Systems. In TENCON 99. Proceedings of the IEEE Region 10 Conference, Vol. 1, pp. 542-545, IEEE.
[39]Mullane, J., Jose, E., Adams, M. D., & Wijesoma, W. S. (2007). Including Probabilistic Target Detection Attributes into Map Representations. Robotics and Autonomous Systems, 55(1), pp. 72-85.
[40]Cobra, D. T., Oppenheim, A. V., & Jaffe, J. S. (1992). Geometric Distortions in Side-Scan Sonar Images: A Procedure for Their Estimation and Ccorrection. Oceanic Engineering, IEEE Journal of, 17(3), pp. 252-268, IEEE.
[41]Anstee, S. D. (1994). The Effects of Towfish Motion on Sidescan Sonar Images. MRL Research Report, Department of Defense DSTO Materials Research Laboratory
[42]Carmichael, D. R., Linnett, L. M., Clarke, S. J., & Calder, B. R. (1996). Seabed Classification through Multifractal Analysis of Sidescan Sonar Imagery. IEE Proceedings-Radar, Sonar and Navigation, 143(3), pp. 140-148.
[43]Nait-Chabane, A., Zerr, B., & Le Chenadec, G. (2013, June). Sidescan Sonar Imagery Segmentation with a Combination of Texture and Spectral Analysis. In MTS/IEEE OCEANS 2013 (Bergen) Conference Proceedings, pp. 1-6, IEEE.
[44]Fallon, M. F., Kaess, M., Johannsson, H., & Leonard, J. J. (2011, May). Efficient AUV Navigation Fusing Acoustic Ranging and Side-Scan Sonar. In Robotics and Automation (ICRA), 2011 IEEE International Conference on (pp. 2398-2405). IEEE.
[45]Ruiz, I. T., De Raucourt, S., Petillot, Y., & Lane, D. M. (2004). Concurrent Mapping and Localization Using Sidescan Sonar. Oceanic Engineering, IEEE Journal of, 29(2), pp. 442-456, IEEE.
[46]Zerr, B., Mailfert, G., Bertholom, A., & Ayreault, H. (2005, June). Sidescan Sonar Image Processing for AUV Navigation. In MTS/IEEE OCEANS 2005 (Europe) Conference Proceedings, Vol. 1, pp. 124-130, IEEE.
[47]Aulinas, J., Lladó, X., Salvi, J., & Petillot, Y. R. (2010, September). Feature Based SLAM Using Side-Scan Salient Objects. In MTS/IEEE OCEANS 2010 (Seattle) Conference Proceedings, pp. 1-8, IEEE.
[48]Woock, P., & Frey, C. (2010, May). Deep-Sea AUV Navigation Using Side-Scan Sonar Images and SLAM. In MTS/IEEE OCEANS 2010 (Sydney) Conference Proceedings, pp. 1-8, IEEE.
[49]Woock, P. (2011, June). Deep-Sea Seafloor Shape Reconstruction from Side-Scan Sonar Data for AUV Navigation. In MTS/IEEE OCEANS 2011 (Spain) Conference Proceedings, pp. 1-7, IEEE.
[50]Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics, MIT Press, Cambridge, MA.
[51]Smith, R., Self, M., & Cheeseman, P. (1990). Estimating Uncertain Spatial Relationships in Robotics. In Autonomous Robot V ehicles, pp. 167-193, Springer New York.
[52]Moravec, H. P., & Elfes, A. (1985, March). High Resolution Maps from Wide Angle Sonar. In Robotics and Automation. Proceedings. 1985 IEEE International Conference, Vol. 2, pp. 116-121, IEEE.
[53]Elfes, A. (1989). Using Occupancy Grids for Mobile Robot Perception and Navigation. Computer, 22(6), pp. 46-57.
[54]Matthies, L., & Elfes, A. (1988, April). Integration of Sonar and Stereo Range Data Using a Grid-Based Representation. In Robotics and Automation, 1988. Proceedings. 1988 IEEE International Conference, pp. 727-733, IEEE.
[55]Thrun, S. B. (1993). Exploration and Model Building in Mobile Robot Domains. In Neural Networks, 1993 IEEE International Conference, pp. 175-180, IEEE.
[56]Thrun, S. (2003). Learning Occupancy Grid Maps with Forward Sensor Models. Autonomous Robots, 15(2), pp. 111-127.
[57]ICPC Recommendation No. 9 Minimum Technical Requirements for a Desktop Study (Also Known as Cable Route Study), Issue 4B, (2012). International Cable Protection Committee (ICPC Ltd).
[58]Latombe, J. (1990). Robot Motion Planning, Kluwer Academic Publishers, Boston, MA.
[59]Hsu, D., Latombe, J. C., & Kurniawati, H. (2006). On the Probabilistic Foundations of Probabilistic Roadmap Planning. The International Journal of Robotics Research, 25(7), pp. 627-643.
[60]LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press, New York.
[61]Han, L., & Amato, N. M. (2000). A Kinematics-Based Probabilistic Roadmap Method for Closed Chain Systems. In Algorithmic and Computational Robotics – New Directions (WAFR 2000), pp. 233-246.
[62]Kavraki, L. E., Švestka, P., Latombe, J. C., & Overmars, M. H. (1996). Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces. Robotics and Automation, IEEE Transactions, 12(4), pp. 566-580, IEEE.
[63]Yang, Y., & Brock, O. (2004, April). Adapting the Sampling Distribution in PRM Planners Based on an Approximated Medial Axis. In Robotics and Automation, 2004. Proceedings. ICRA''04. 2004 IEEE International Conference, Vol. 5, pp. 4405-4410, IEEE.
[64]Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths. Systems Science and Cybernetics, IEEE Transactions, 4(2), pp. 100-107, IEEE.
[65]Pollack, M., & Wiebenson, W. (1960). Solutions of the Shortest-Route Problem-A Review. Operations Research, 8(2), pp. 224-230.
[66]Whiting, P. D., & Hillier, J. A. (1960). A Method for Finding the Shortest Route through a Road Network. Operational Research Quarterly (OR), pp. 37-40.
[67]Newell, A., & Simon, H. A. (1976). Computer Science as Empirical Inquiry: Symbols and Search. Communications of the ACM, 19(3), pp. 113-126.
[68]Dijkstra, E. W. (1959). A Note on Two Problems in Connexion with Graphs. Numerische Mathematik, 1(1), pp. 269-271.
[69]Al-Hasan, S., & Vachtsevanos, G. (2002). Intelligent Route Planning for Fast Autonomous Vehicles Operating in a Large Natural Terrain. Robotics and Autonomous Systems, 40(1), pp. 1-24.
[70]Yao, J., Lin, C., Xie, X., Wang, A. J., & Hung, C. C. (2010, April). Path Planning for Virtual Human Motion Using Improved A* Star Algorithm. In Information Technology: New Generations (ITNG), 2010 Seventh International Conference, pp. 1154-1158, IEEE.
[71]AlShawi, I. S., Yan, L., Pan, W., & Luo, B. (2012). Lifetime Enhancement in Wireless Sensor Networks Using Fuzzy Approach and A-Star Algorithm. Sensors Journal, IEEE, 12(10), pp. 3010-3018, IEEE.
[72]Chen, E., & Guo, J. H. (2015, February). Observability-Based Maneuvering Planner for AUV. Journal of Taiwan Society of Naval Architects and Marine Engineers, 34(1), pp. 41-54.
[73]Healey, A. J., & Good, M. R. (1992). The NPS AUVII Autonomous Underwater Vehicle Testbed: Design and Experimental Verification. Naval Engineers Journal, 104(3), pp. 191-202.
[74]Healey, A. J., & Lienard, D. (1993). Multivariable Sliding Mode Control for Autonomous Diving and Steering of Unmanned Underwater Vehicles. Oceanic Engineering, IEEE Journal of, 18(3), pp. 327-339.
[75]Strahle, W. C. (1988). Adaptive Nonlinear Filter Using Fractal Geometry. Electronics Letters, 24(19), pp. 1248-1249.
[76]Atal, B. S., & Rabiner, L. R. (1976, June). A Pattern Recognition Approach to Voiced-Unvoiced-Silence Classification with Applications to Speech Recognition. Acoustics, Speech and Signal Processing, IEEE Transactions on, 24(3), pp. 201-212, IEEE.
[77]Nakagami, M. (1960). The M-distribution-A General Formula of Intensity Distribution of Rapid Fading. Statistical Method of Radio Propagation, pp. 3-36.
[78]Smith, R. C., & Cheeseman, P. (1986). On the Representation and Estimation of Spatial Uncertainty. The International Journal of Robotics Research, 5(4), pp. 56-68.
[79]Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust Monte Carlo Localization for Mobile Robots. Artificial Intelligence, 128(1), pp. 99-141.
[80]Choset, H. M. (2005). Principles of Robot Motion: Theory, Algorithms, and Implementation, 240. MIT Press.
[81]Yoshiaki Shirai, & Junʼichi Tsujii. (1985, May). Artificial Iintelligence: Concepts, Techniques, and Applications, Wiley.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 江志正(2005)。從實務看國民小學校長專業發展的時代意義、困境與實踐。教育研究月刊,129,15-26。
2. 余政賢(2007)。校長不適任怎麼辦。師友月刊,480,頁32-35。
3. 吳百祿(2007)。校長專業發展政策與內容之研究:美國肯塔基等四州之實例及其對我國的啟示。教育政策論壇,10(4),頁53-88。
4. 吳清山(2002)。當前校長遴選制度的迷思與省思。教師天地,118,頁7-14。
5. 林純文(1996)。國民小學組織氣候、教師工作壓力及其因應方式之研究。國立屏東師範學院國民教育研究所碩士論文,未出版,屏東。
6. 秦夢群(1999)。國民中小學校長遴選制度之評析。國民教育,40(2),頁28-31。
7. 秦夢群、王友聖(2007)。學校教師會發展與運作之研究分析。教育研究月刊2007年十月號教育政治與政策分析。頁61-69。
8. 許志賢(1999)。從人事法制的變遷談校長角色的調適。教育資料與研究,29,17-19。
9. 張明輝(2000)。中小學校長遴選的人性化課題。學校行政雙月刊,9,頁41-45。
10. 郭明德(2004)。教師壓力管理的有效策略。研習資訊,21(1),71-79。
11. 黃宗顯(2007)。校長權利運用的美學轉化。教育研究月刊2007年十月號教育政治與政策分析。頁5-12。
12. 黃淑馨(1997)。新世紀國民小學校長之角色與作為。教師天地,87,58。
13. 黃德祥(1999)。中小學校長遴選制宜有配套。教育資料文摘,257,23-24。
14. 鄧柑謀(1994)。壓力因應之意義理論及其應用。教育研究雙月刊,40,頁45-51。
15. 謝文全(2000)。中小學教育培育、任用、評鑑制度。教育資料與研究,28,頁2-5。
 
無相關點閱論文