跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 02:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王胤傑
研究生(外文):Yin-Jie Wang
論文名稱:網版印刷厚膜及氣膠沉積堆疊多層壓電微型能量擷取裝置之研製
論文名稱(外文):Design and Fabrication of Screen Printed Thick Film and Stacked Aerosol Deposited Multilayer Piezoelectric Micro Energy Harvester
指導教授:吳文中
指導教授(外文):Wen-Jong Wu
口試委員:李世光謝志文
口試日期:2015-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:105
中文關鍵詞:微機電壓電材料能量擷取網版印刷氣膠沉積
外文關鍵詞:MEMSPiezoelectric materialEnergy harvestingScreen printingAerosol deposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於物聯網的概念相當熱門,對於感知層中的傳感元件需求量大增,也因積體電路製程技術的發展,越來越多微型化智慧元件耗能需求逐漸降至數十微瓦,因此如何供應龐大數量的微能量需求就成相當重要的議題。傳統使用接線式供電或者電池式供電,因元件安裝位置隱蔽且有使用壽命問題,因此在供電上造成相當大的麻煩。而一種能夠透過環境能源轉換電能的自供電系統就有其優勢。一般多採用太陽能作為能量源擷取使用,但物聯網架構中大部分元件安裝於室內或機台內部環境,因缺乏穩定的太陽光能環境,作為供電使用上受到相當大的限制,而環境中能量密度次高的壓電式擷取震動能源取電方式就成了不錯的選擇之一。
為了使製作出的壓電能量擷取裝置更適合供電給應用端做使用。因此本論文第三章朝如何使用網版印刷厚膜技術,再短時間內沉積所需之高品質壓電層膜厚。於第四章時主要朝壓電微型能量擷取裝置之結構改變,去改善能量擷取裝置之輸出弱點。
實驗結果顯示,網版印刷之PZT壓電厚膜,經過高溫燒結的製程改善,有效避免材料中的鉛成分氧化揮發,在高溫燒結後能保有較理想之壓電材料特性。
此外,使用氣膠沉積技術製作堆疊多層微型能量擷取器元件,以並聯式極化各層電偶極矩排列方向,並以並聯式連接各層量測輸出特性。當元件在1 g加速度及共振頻率121.5 Hz下,其最佳負載阻抗值約為15 kΩ,且在最佳阻抗下輸出功率為80.14 μW。相較於單層架構元件,其負載阻抗值下降約近十倍,及在最佳阻抗值時其輸出電流值增加約有三倍之多。


The concept of “Internet of Things” has become a hot topic in recent years, and the need for sensing devices has risen substantially. Due to the advancement of VLSI technology, the power consumption of micro-scale smart devices has gradually reduced to tens of microwatts. As such, the ability to produce this level of energy in large quantity has become an important task. Traditional use of power cord to supply energy or the usage of battery has proven to be quite inconvenient, for the placement of the devices may be hard to reach, and the lifetime of such power sources are often unreliable. A method that utilizes the environment to provide a self-powered electrical energy will be beneficial. Solar power can be used as a general resource, but in many cases the devices are installed in enclosed areas where lighting is insufficient. Therefore, vibrational energy sources has become a primary target for energy extraction.
In order to create a piezoelectric energy harvester that is suitable to provide energy for further applications, a screen-printing technique to create thick film is discussed in chapter three of this paper. The technique is used to deposit high quality piezoelectric film in a short amount of time. In chapter four, the structure and design of the piezoelectric harvester is discussed, to improve the overall output of the harvester.
Experimental results indicate that the PZT piezoelectric thick film has avoided the oxidation and vaporization of lead from the material when a sintering process has been done. The high temperature sintering process can preserve a better piezoelectric characteristic.
Additionally, Aerosol deposition method is used to fabricate a multilayer micro energy harvester. By poling each layer’s dipole in parallel form, and connecting each layer in parallel to measure the performance, we can obtain the optimal load to be 15kΩ, and the optimal output power to be 80.14μW when the device is operating at its resonant frequency of 121.5Hz and under 1g acceleration. In comparison to a single-layer structured device, the output load resistance has been lowered to almost 10 times, and the output current at the optimal load has increase to about three times.


中文摘要 I
Abstract II
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1 研究動機 1
1-2 論文目標 5
1-3 論文架構 6
第二章 文獻回顧 7
2-1 壓電材料的特性 7
2-1-1 正壓電效應 7
2-1-2 逆壓電效應 8
2-2 壓電材料的種類 9
2-3 壓電常數 10
2-4 壓電薄膜成長方式 13
2-4-1 溶膠凝膠法(Sol-gel) 14
2-4-2 濺鍍法(Sputtering) 15
2-4-3 水熱合成法(Hydrothermal) 16
2-4-4 網版印刷法(Screen Printing) 17
2-4-5 氣膠沉積法(Aerosol) 18
2-4-6 各壓電薄膜鍍膜方式比較 20
2-5 微型能量擷取器介紹與文獻回顧 22
2-5-1 壓電微型能量擷取器介紹 22
2-5-2 壓電微型能量擷取器文獻回顧 25
第三章 網版印刷製作壓電厚膜 31
3-1 實驗設計 31
3-2 網版印刷沉積設備原理介紹 32
3-2-1 網版印刷之設備架構 32
3-2-2 網版印刷之控制條件 34
3-3 網版印刷製程流程 35
3-3-1 網版設計 36
3-3-2 漿料調配 37
3-3-3 基板選擇 38
3-3-4 印刷參數設定 39
3-3-5 烤乾及去脂 41
3-3-6 燒結 41
3-4 壓電厚膜特性實驗分析 42
3-4-1 去脂條件 44
3-4-2 燒結處理 45
3-4-3 XRD量測 48
第四章 堆疊多層壓電式微型能量擷取器製作 50
4-1 結構設計及模擬 50
4-2 製程設備 54
4-3 氣膠沉積壓電薄膜原理及設備 56
4-4 微機電製程實驗流程 59
4-4-1 光罩設計及製作 60
4-4-2 黃光微影製作流程 62
4-4-3 電極層製作 68
4-5 堆疊多層壓電式微型能量擷取器製程 70
第五章 實驗量測與數據分析 78
5-1 製程實驗結果 78
5-2 極化實驗 81
5-3 量測架構 84
5-4 量測結果與討論 86
5-4-1 開迴路電壓與共振頻率關係量測 87
5-4-2 電壓及功率與阻抗之關係量測 90
5-4-3 電壓及功率與加速度之關係量測 93
5-4-4 並聯式及串聯式輸出特性比較 94
5-4-5 實驗結果討論 97
第六章 結論及未來展望 99
6-1 結論 99
6-2 未來展望 100
參考文獻 101


[1]R. Amirtharajah, "Design of a low power VLSI systems powered by ambient mechanical vibration," Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.
[2]Shad Roundy, Paul K. Wright , and J. Rabaey, "A study of low level vibrations as a power source for wireless sensor nodes," Computer Co mmunications, vol. 26, pp. 1131-1144, 2003.
[3]S. P. Beeby, M. J. Tudor, and N. M. White, "Energy harvesting vibration sources for microsystems applications," Measurement Science and Technology, vol. 17, pp. R175-R195, 2006.
[4]J. g. Rocha, L. M. goncalves, P. Rocha, M. Silva, and S. Lanceros-Mendez, "Energy harvesting from piezoelectric materials fully integrated in footwear," Industrial Electronics, IEEE Transactions on, vol. 57, pp. 813-819, 2010.
[5]M. Hempstead, N. Tripathi, P. Mauro, g.-Y. Wei, and D. Brooks, "An Ultra Low Power System Architecture for Sensor Network Applications," ISCA, vol. 33, pp. 208-219, 2005.
[6]M. Rezaei, J. Lueke, D. Raboud, and W. Moussa, "Challenges in fabrication and testing of piezoelectric MEMS with a particular focus on energy harvesters," Microsystem Technologies, vol. 19, pp. 1195-1219, 2013.
[7]吳朗, 壓電電子陶瓷. 全欣資訊圖書, 1994.
[8]g. Yi, Z. Wu, and M. Sayer, "Preparation of Pb(Zr,Ti)O3 thin films by sol gel processing: Electrical, optical, and electro-optic properties," Journal of Applied Physics, vol. 64, p. 2717, 1988.
[9]D. A. Barrow, T. E. Petroff, R. P. Tandon, and M. Sayer, "Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process," Journal of Applied Physics, vol. 81, p. 876, 1997.
[10]T. Hata, S. Kawagoe, W. Zhang, K. Sasaki, and Y. Yoshioka, "Proposal of new mixture target for PZT thin films by reactive sputtering," Vacuum, vol. 51, pp. 665-671, 1998.
[11]T. Kanda, M. K. Kurosawa, H. Yasui, and T. Higuchi, "Performance of hydrothermal PZT film on high intensity operation," Sensors and Actuators A: Physical, vol. 89, pp. 16-21, 2001.
[12]D. Nakahira, T. Kanda, K. Suzumori, M. Kabuto, Y. Michihiro, and M. Ueno, "Hydrothermal deposition of the PZT film and applications of piezoelectric actuators," in Mechatronics and Machine Vision in Practice (M2VIP), 2012 19th International Conference, 2012, pp. 501-506.
[13]g. S. White, C. J. W. Breward, P. D. Howell, and R. J. S. Young, "A model for the screen-printing of Newtonian fluids," Journal of Engineering Mathematics, vol. 54, pp. 49-70, 2005.
[14]Y. Jeon, J. Chung, and K. No, "Fabrication of PZT thick films on silicon substrates for piezoelectric actuator," Journal of electroceramics, vol. 4, pp. 195-199, 2000.
[15]C. Robertson, "Miniature sensors using high density screen printing," Sensor Review, vol. 19, pp. 33-36, 1999.
[16]J. Akedo, M. Ichiki, K. Kikuchi, and R. Maeda, "Jet molding system for realization of three-dimensional micro-structures," Sensors and Actuators A: Physical, vol. 69, pp. 106-112, 1998.
[17]X. M. Zhao, Y. Xia, and g. M. Whitesides, "Fabrication of three‐dimensional micro‐structures: Microtransfer molding," Advanced Materials, vol. 8, pp. 837-840, 1996.
[18]B. S. Lee, S. C. Lin, W. J. Wu, X. Y. Wang, P. Z. Chang, and C. K. Lee, "Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film," Journal of Micromechanics and Microengineering, vol. 19, p. 065014, 2009.
[19]Y. B. Jeon, R. Sood, J. h. Jeong, and S. g. Kim, "MEMS power generator with transverse mode thin film PZT," Sensors and Actuators A: Physical, vol. 122, pp. 16-22, 2005.
[20]H.-B. Fang, J.-Q. Liu, Z.-Y. Xu, L. Dong, L. Wang, D. Chen, et al., "Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting," Microelectronics Journal, vol. 37, pp. 1280-1284, 2006.
[21]A. Lei, R. Xu, A. Thyssen, A. C. Stoot, T. L. Christiansen, K. Hansen, et al., "MEMS-based thick film PZT vibrational energy harvester," in Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on, 2011, pp. 125-128.
[22]R. Xu, A. Lei, C. Dahl-Petersen, K. Hansen, M. guizzetti, K. Birkelund, et al., "Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting," Sensors and Actuators A: Physical, vol. 188, pp. 383-388, 2012.
[23]S. gebhardt, L. Seffner, F. Schlenkrich, and A. Schönecker, "PZT thick films for sensor and actuator applications," Journal of the European Ceramic Society, vol. 27, pp. 4177-4180, 2007.
[24]R. Torah, S. P. Beeby, and N. M. White, "An Improved Thick-Film Piezoelectric Material by powder blending and enhanced processing parameters," Browse Journals & Magazines, vol. 52, 2005.
[25]B. Y. Lee, C. I. Cheon, J. S. Kim, K. S. Bang, J. C. Kim, and H. g. Lee, "Low temperature firing of PZT thick films prepared by screen printing method," Materials letters, vol. 56, pp. 518-521, 2002.
[26]D. Zhu, P. glenne-Jones, N. White, N. Harris, J. Tudor, R. Torah, et al., "Screen printed piezoelectric films for energy harvesting," Advances in Applied Ceramics, vol. 112, pp. 79-84, 2013.
[27]D. Zhu, S. Beeby, J. Tudor, N. White, and N. Harris, "Improving Output Power of Piezoelectric Energy Harvesters using Multilayer Structures," Procedia Engineering, vol. 25, pp. 199-202, 2011.
[28]H. D. Chen, K. R. Udayakumar, L. E. Cross, J. J. Bernstein, and L. C. Niles, "Dielectric, ferroelectric, and piezoelectric properties of lead zirconate titanate thick films on silicon substrates," Journal of Applied Physics, vol. 77, p. 3349, 1995.
[29]R. Torah, S. Beeby, M. Tudor, and N. White, "Thick-film piezoceramics and devices," Journal of Electroceramics, vol. 19, pp. 97-112, 2007.
[30]Vincent Walter, Patrick Delobelle, Patrice Le Moal, Eric Joseph, and M. Collet, "A piezo-mechanical characterization of PZT thick films screen-printed on alumina substrate," Sensors and Actuators A: Physical, vol. 96, pp. 157-166, 2002.
[31]N. M. White, P. glynne-Jones, and S. P. Beeby, "A novel thick-film piezoelectric micro-generator," Smart Materials and Structures, vol. 10, pp. 850-852, 2001.
[32]V. Tajan, P. gonnard, and M. Troccaz, "Elaboration of PZT thick films by screen printing," vol. 2779, pp. 564-569, 1996.
[33]K. Yao and W. Zhu, "Improved preparation procedure and properties for a multilayer piezoelectric thick-film actuator," Sensors and Actuators A: Physical, vol. 71, pp. 139-143, 1998.
[34]H. Kim, S. Priya, H. Stephanou, and K. Uchino, "Consideration of Impedance Matching techniques for efficient piezoelectric energy harvesting," Browse Journals & Magazines, vol. 54, 2007.
[35]L. M. Miller, E. Halvorsen, T. Dong, and P. K. Wright, "Modeling and experimental verification of low-frequency MEMS energy harvesting from ambient vibrations," Journal of Micromechanics and Microengineering, vol. 21, p. 045029, 2011.
[36]S.-C. Lin and W.-J. Wu, "Piezoelectric micro energy harvesters based on stainless-steel substrates," Smart Materials and Structures, vol. 22, p. 045016, 2013.
[37]S. L. Kok, Energy Harvesting Technologies: Thick-Film Piezoelectric Microgenerator: INTECH Open Access Publisher, 2011.
[38]R. Amirtharajah and A. P. Chandrakasan, "Self-powered signal processing using vibration-based power generation," Solid-State Circuits, IEEE Journal of, vol. 33, pp. 687-695, 1998.
[39]K. Morimoto, I. Kanno, K. Wasa, and H. Kotera, "High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers," Sensors and Actuators A: Physical, vol. 163, pp. 428-432, 2010.
[40]E. E. Aktakka, R. L. Peterson, and K. Najafi, "Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting," in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, 2011, pp. 1649-1652.
[41]g. Tang, J.-q. Liu, B. Yang, J.-b. Luo, H.-s. Liu, Y.-g. Li, et al., "Fabrication and analysis of high-performance piezoelectric MEMS generators," Journal of Micromechanics and Microengineering, vol. 22, p. 065017, 2012.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 江暢。2002。〈中共海軍戰略思想演進之研究〉〉。《海軍學術月刊》。36(2):24。
2. 余永章。2007。〈中共面臨高科技戰場環境下之作戰發展趨勢〉。《國防雜誌》
3. 林廷輝。2007。〈中共經略太平洋島國動態與戰略意圖〉。《中共研究》。41(6):50-65。
4. 林煥廷。2007。〈中日關係的發展與影響因素之研究〉。《展望與探索》。5(8):
5. 林宗達。2007。〈中共巡防艦的發展和現代化之評析〉。《中共研究》。41(3):104-105。
6. 吳瑞林。2004。〈二○○三中共軍事〉。《中共研究》。38(1):99。
7. 金榮勇。2007。〈美國在東亞戰略角色之調整〉。《國際關係學報》。2007(1):99。
8. 施子中。2002。〈中共海軍跨世紀建設與發展戰略之研究〉。《中共研究》36
9. 袁易。1996。〈多邊主義與安全困境下之合作:國際關係理論與美「中」關係〉。《問題與研究》35(6):8。
10. 馬振坤。2006。〈中共軍力擴張與限制〉。《國防雜誌》。21(6):157-168。
11. 唐仁俊。2000。〈中共海權擴張與其對亞太地區之影響〉。《海軍學術月刊》。34(4):20。
12. 黃恩浩。2007。(中國海權崛起與其「珍珠串」海上戰略)。《中共研究》。41(11):102。
13. 黃學明。2006。〈中共石油安全戰略之探討〉。《國防雜誌》。21(5):206。
14. 陳欣之。1996。〈東協諸國對中國威脅的看法與回應〉。《問題與研究》。35
15. 陳文賢。1998。〈從權力平衡的觀點看亞太安全〉。《問題與研究》37(3):22。
 
無相關點閱論文