跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱培菡
研究生(外文):Pei-Han Chiu
論文名稱:具非平表面之複合材料膠合處剪切強度分析
論文名稱(外文):Analysis of Adhesively Bonded Composite Single Lap Joints with Wrinkled Interfaces
指導教授:黃心豪黃心豪引用關係
指導教授(外文):Hsin-Haou Huang
口試委員:林輝政宋家驥江茂雄
口試委員(外文):Huei-Jeng LinChia-Chi SungMao-Hsiung Chiang
口試日期:2015-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:167
中文關鍵詞:風機葉片SCRIMP簡易剪切試片非平表面剪切試驗
外文關鍵詞:Wind turbine bladeSCRIMPSimple single lapWrinkled interfacesShear test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究進行一連串的實驗及有限元素模擬,針對風力發電機葉片翼型尾端結構膠黏結區域進行結構改良分析,由於製造風機葉片具耗時及高成本問題,所以為了簡化實際情況,本文利用簡易剪切試片來比擬葉片翼型尾端之黏結情形。實驗部分,首先利用Seemann複材樹脂轉注成型技術(Seemann Composite Resin Infusion Molding Process, SCRIMP)製作複合材料板,在鋪設耗材時,在纖維布頂面放置鐵絲補強材料,此方法不但能維持纖維連續性,亦能在複合材料表面建置幾何,目的是增強複合材料與結構膠間之剪切強度。本研究依循美國材料與試驗協會(American Society for Testing and Materials, ASTM)提供之ASTM D 5868-01國際規範去製作簡易剪切試片(Simple single lap specimen),再將各試片進行拉伸試驗(Single lap test)去取得載荷與位移曲線圖。由實驗結果顯示,增添補強材料之其中一組改良剪切試片,黏結區域具有較好的應變能。有限元素模擬部分是使用商用有限元素軟體Abaqus,建立二維模型來模擬剪切試片在拉伸試驗時所承受之負載條件,再分別記錄結構膠上層節點及中心線節點之標準化剝離應力(Normalized peeling stress)、標準化剪應力(Normalized shear stress),觀察結構膠之應力傳遞情形,接著使用Hashin、Cohesive破壞理論修改數值模型,對每組剪切試片進行破壞預測,觀察各組試片間之強度差異,整合實驗與模擬結果進行詳細討論,並檢討實驗因素造成之誤差,提出如何設計更優良之試片。最後根據風力發電機葉片之製程情況,討論如何將本實驗方法與風機製程結合,提供未來製造風機葉片時使用,以提高葉片翼型尾端之抗剪強度,希望能有效降低剝離應力及剪應力造成風機葉片翼型尾端破壞的情形產生,達到增加風機葉片使用年限的目的。

This research carried on a series of experiments and finite element simulations. Improved structural analysis of wind turbine blade airfoil trailing structural adhesive bonding area was highlighted. Due to manufacturing wind turbine blades was time consuming and costly. In order to simplify the actual situation, simple single lap specimen was used to match the blade airfoil trailing edge bonding situation. In the experiment part, Seemann Composite Resin Infusion Molding Process (SCRIMP) method was used for composite panels fabrication. In the progress of laying glass fabrics, Metallic wires serving as the reinforcement were placed on the top of the fabrics. This process not only maintains the continuity of the fibers in the composite material but also creates geometrically non-flat surface. The purpose of the process was to enhance the shear and peeling strength between the composite and the structural adhesive. Single lap specimens are made following the international standard ASTM D 5868-01 and subjected to static tensile tests. From the experimental results, one of specimens with reinforcement layer had shown better strain energy in bonded area. Finite element simulation part was using commercial finite element software Abaqus. Simplified two-dimensional finite element models were constructed and studied for understanding the stress distribution within the adhesive. Peeling stress and shear stress along the node of the top-line and centerline at structural adhesive part were recorded to observe the stress transferring situation. Then use the Hashin criteria and Cohesive criteria modify numerical model. Make damage prediction and compare the strength of each shear test specimens. The result of simulations and experiments would be compared and discussed. Review the error caused by the experimental factors and propose how to design better specimen. Finally, the study according to the manufacturing process of wind turbine blades discussed how to integrate the experimental method into the blade manufacture. The improvement of wind turbine blades manufacture would enhance the shear strength of the wind turbine blade airfoil trailing edge and reduce the blade airfoil trailing edge failure by fatal peeling stress and shear stress efficiently. Let the wind turbine blade achieve the purpose of increasing the useful life.

口試委員會審定書 ii
誌謝 iii
中文摘要 iv
ABSTRACT v
目錄 vi
圖目錄 ix
表目錄 xviii
第1章 緒論 1
1.1 研究動機與背景 1
1.2 文獻回顧 2
1.3 研究方法 22
1.4 論文架構 24
第2章 Seemann樹脂注入成型技術 26
2.1 鐵絲複材板製作方法 26
2.1.1 製程設備及材料 26
2.1.2 調配環氧樹脂及硬化劑 27
2.1.3 技術流程 28
2.1.4 添入補強材 39
2.2 複合材料拉伸試片製作 40
2.3 簡易剪切試片尺寸規格 41
2.4 表面平坦試片 42
2.5 添加鐵絲試片 44
2.5.1 複材表面對稱黏結 44
2.5.2 複材表面交叉黏結 51
第3章 拉伸、剪切試驗 59
3.1 MTS拉伸試驗機 59
3.2 複材試片拉伸試驗 59
3.3 剪切試片破壞型式 62
3.3.1 傳統剪切試片破壞形式 63
3.3.2 非平表面剪切試片破壞形式 63
3.4 平坦表面試片剪切試驗 68
3.5 增添鐵絲補強材剪切試驗 72
3.5.1 表面對稱黏結試片 72
3.5.2 表面交叉黏結試片 84
第4章 數值模擬 97
4.1 複合材料力學 97
4.1.1 等效均質固體 98
4.1.2 VOIGT MODEL 及 REUSS MODEL 99
4.2 剪切試片應力傳遞分析 100
4.2.1 材料參數設定 101
4.2.2 邊界條件設定 101
4.2.3 原始平坦表面試片 102
4.2.4 表面對稱黏結試片模擬 104
4.2.5 表面交叉對稱黏結試片模擬 113
4.3 剪切試片破壞分析 123
4.3.1 複合材料拉伸試片之曲線擬合 123
4.3.2 傳統剪切試片之曲線擬合 126
4.3.3 鐵絲無剝離模型 130
4.3.4 鐵絲剝離模型 133
第5章 試驗與模擬結果討論 138
5.1 實驗與模擬數據探討 138
5.1.1 對稱鐵絲試片應力分析 138
5.1.2 交叉對稱試片應力分析 140
5.1.3 綜合各類型試片應力分析與實驗結果 141
5.1.4 綜合破壞分析與實驗結果 146
5.2 實驗因素討論與驗證 148
第6章 結論 151
第7章 未來方向 152
參考文獻 155
附錄A : 結構膠上層應力傳遞圖 158
附錄B : 結構膠中線應力傳遞圖 161
附錄C : 鐵絲無剝離模型 164
附錄D : 鐵絲剝離模型 166


[1]D. S. Cairns, T. Riddle, and J. Nelson, "Wind turbine composite blade manufacturing: The need for understanding defect origins, prevalence, implications and reliability", Contractor Report SAND2011-1004, Sandia National Laboratories, Albuquerque, NM, 2011.
[2]Boeing official website, "http://www.boeing.com/commercial/787family/background.html".
[3]孫摩西,2012,風力發電葉片真空輔助樹脂轉注成型,碩士論文,國立成功大學航空太空工程研究所。
[4]陳宇浩,2011,利用陶瓷壓電振動激化複合材料表面螺紋印現象,碩士論文,國立台灣大學工程科學及海洋工程研究所。
[5]R. Jones, "Mechanics of composite materials", 1999.
[6]T. G. P. Gutowski, Advanced composites manufacturing: John Wiley & Sons, 1997.
[7]G. Li, S. S. Pang, E. Woldesenbet, M. A. Stubblefield, P. F. Mensah, and S. I. Ibekwe, "Investigation of prepreg bonded composite single lap joint", Composites Part B: Engineering, vol. 32, pp. 651-658, 2001.
[8]P. Br ndsted, H. Lilholt, and A. Lystrup, "Composite materials for wind power turbine blades", Annu. Rev. Mater. Res., vol. 35, pp. 505-538, 2005.
[9]G. Marsh, "Tooling up for large wind turbine blades", Reinforced Plastics, vol. 51, pp. 38-43, 2007.
[10]張原譯,2014,風力發電機葉片於颱風風況下之結構強度分析,碩士論文,國立台灣大學工程科學及海洋工程研究所。
[11]李志中,2013,風力發電葉片結構之剪力流分析模擬,碩士論文,國立台灣大學工程科學及海洋工程研究所。
[12]M. Tsai and J. Morton, "An evaluation of analytical and numerical solutions to the single-lap joint", International Journal of Solids and Structures, vol. 31, pp. 2537-2563, 1994.
[13]O. Volkersen, "Niektraftverteilung in zugbeanspruvhten mit konstanten laschenquerschritten", Luftfahrforshung, vol. 15, pp. 41-47, 1938.
[14]M. Goland and E. Reissner, "The stresses in cemented joints", Journal of applied mechanics, vol. 11, pp. A17-A27, 1944.
[15]S. S. Smeltzer III and E. Lundgren, "Analytical and numerical results for an adhesively bonded joint subjected to pure bending", Proceedings of the AIAA/ASME/ASCE/AHS/ASC 47th Structures, Structural Dynamics, and Materials Conference, 2006, pp. 2006-1960.
[16]C. T. Hoang-Ngoc and E. Paroissien, "Simulation of single-lap bonded and hybrid (bolted/bonded) joints with flexible adhesive", International Journal of Adhesion and Adhesives, vol. 30, pp. 117-129, 2010.
[17]L. Grant, R. Adams, and L. F. da Silva, "Effect of the temperature on the strength of adhesively bonded single lap and T joints for the automotive industry", International Journal of Adhesion and Adhesives, vol. 29, pp. 535-542, 2009.
[18]M. Adamvalli and V. Parameswaran, "Dynamic strength of adhesive single lap joints at high temperature", International Journal of Adhesion and Adhesives, vol. 28, pp. 321-327, 2008.
[19]M. G. Song, J. H. Kweon, J. H. Choi, J. H. Byun, M. H. Song, S.-J. Shin, et al., "Effect of manufacturing methods on the shear strength of composite single-lap bonded joints", Composite Structures, vol. 92, pp. 2194-2202, 2010.
[20]Y. B. Park, M. G. Song, J. J. Kim, J. H. Kweon, and J. H. Choi, "Strength of carbon/epoxy composite single-lap bonded joints in various environmental conditions", Composite Structures, vol. 92, pp. 2173-2180, 2010.
[21]K. S. Kim, Y. M. Yi, G. R. Cho, and C. G. Kim, "Failure prediction and strength improvement of uni-directional composite single lap bonded joints", Composite structures, vol. 82, pp. 513-520, 2008.
[22]N. Rahman and C. Sun, "Strength calculation of composite single lap joints with Fiber-Tear-Failure", Composites Part B: Engineering, vol. 62, pp. 249-255, 2014.
[23]A. Kinloch, "Interfacial fracture mechanical aspects of adhesive bonded joints—a review", 1979.
[24]T. Lang and P. Mallick, "Effect of spew geometry on stresses in single lap adhesive joints", International Journal of Adhesion and adhesives, vol. 18, pp. 167-177, 1998.
[25]Q. G. Zeng and C. Sun, "Novel design of a bonded lap joint", AIAA journal, vol. 39, pp. 1991-1996, 2001.
[26]M. Ashrafi, A. Ajdari, N. Rahbar, J. Papadopoulos, H. Nayeb-Hashemi, and A. Vaziri, "Adhesively bonded single lap joints with non-flat interfaces", International journal of adhesion and adhesives, vol. 32, pp. 46-52, 2012.
[27]Q. G. Zeng and C. Sun, "Fatigue performance of a bonded wavy composite lap joint", Fatigue & Fracture of Engineering Materials & Structures, vol. 27, pp. 413-422, 2004.
[28]B. Haghpanah, S. Chiu, and A. Vaziri, "Adhesively bonded lap joints with extreme interface geometry", International Journal of Adhesion and Adhesives, vol. 48, pp. 130-138, 2014.
[29]L. Tong and X. Sun, "Nonlinear stress analysis for bonded patch to curved thin-walled structures", International journal of adhesion and adhesives, vol. 23, pp. 349-364, 2003.
[30]G. Richardson, A. Crocombe, and P. Smith, "A comparison of two-and three-dimensional finite element analyses of adhesive joints", International journal of adhesion and adhesives, vol. 13, pp. 193-200, 1993.
[31]G. Fessel, J. Broughton, N. Fellows, J. Durodola, and A. Hutchinson, "Evaluation of different lap-shear joint geometries for automotive applications", International journal of adhesion and adhesives, vol. 27, pp. 574-583, 2007.
[32]A. McLaren and I. MacInnes, "The influence on the stress distribution in an adhesive lap joint of bending of the adhering sheets", British Journal of Applied Physics, vol. 9, p. 72, 1958.
[33]L. Greenwood, T. Boag, and A. McLaren, "Stress distribution in lap joints", Adhesion-Fundamentals and Practice, pp. 20-22, 1969.
[34]A. F. Avila and P. N. D. O. Bueno, "Stress analysis on a wavy-lap bonded joint for composites", International journal of adhesion and adhesives, vol. 24, pp. 407-414, 2004.
[35]A. F. Avila and P. N. D. O. Bueno, "An experimental and numerical study on adhesive joints for composites", Composite structures, vol. 64, pp. 531-537, 2004.
[36]G. Li, P. Lee-Sullivan, and R. W. Thring, "Nonlinear finite element analysis of stress and strain distributions across the adhesive thickness in composite single-lap joints", Composite Structures, vol. 46, pp. 395-403, 1999.
[37]R. H. Andruet, D. A. Dillard, and S. M. Holzer, "Two-and three-dimensional geometrical nonlinear finite elements for analysis of adhesive joints", International Journal of Adhesion and Adhesives, vol. 21, pp. 17-34, 2001.
[38]J. Goncalves, M. De Moura, and P. De Castro, "A three-dimensional finite element model for stress analysis of adhesive joints", International Journal of Adhesion and Adhesives, vol. 22, pp. 357-365, 2002.
[39]M. Alfano, F. Furgiuele, A. Leonardi, C. Maletta, and G. H. Paulino, "Cohesive zone modeling of mode I fracture in adhesive bonded joints", Key Engineering Materials, vol. 348, pp. 13-16, 2007.
[40]H. Khoramishad, A. Crocombe, K. Katnam, and I. Ashcroft, "Predicting fatigue damage in adhesively bonded joints using a cohesive zone model", International Journal of fatigue, vol. 32, pp. 1146-1158, 2010.
[41]K. Song, C. G. Davila, and C. A. Rose, "Guidelines and parameter selection for the simulation of progressive delamination", Abaqus User''s Conference, Newport, Rhode Island (Hibbit Karlsson and Sorensen, USA, 2008), 2008, pp. 1-15.
[42]馮瑞裕與鄭榮和,2007,膠合元素的實驗驗證與應用,12th Abaqus Taiwan Users'' Confrerence。
[43]臧祥甫、張明福、邱垂鈺、楊世明與陳燦桐,2012,橡膠與金屬黏結構之黏膠破壞模擬分析,2012 SIMULIA Regional User Meeting。
[44]M. Alfano, F. Furgiuele, A. Leonardi, C. Maletta, and G. Paulino, "Mode I fracture of adhesive joints using tailored cohesive zone models", International journal of fracture, vol. 157, pp. 193-204, 2009.
[45]J. Neto, R. Campilho, and L. Da Silva, "Parametric study of adhesive joints with composites", International Journal of Adhesion and Adhesives, vol. 37, pp. 96-101, 2012.
[46]R. Campilho, M. De Moura, and J. Domingues, "Using a cohesive damage model to predict the tensile behaviour of CFRP single-strap repairs", International Journal of Solids and Structures, vol. 45, pp. 1497-1512, 2008.
[47]Á. Olmedo and C. Santiuste, "On the prediction of bolted single-lap composite joints", Composite Structures, vol. 94, pp. 2110-2117, 2012.
[48]J. Fan, Z. Guan, and W. Cantwell, "Numerical modelling of perforation failure in fibre metal laminates subjected to low velocity impact loading", Composite structures, vol. 93, pp. 2430-2436, 2011.
[49]K. M. S. Gonçalves, "Hashin''s failure criteria in-plane stress numerical model correlated to tensile tests", 2015.
[50]M. Machado, M. Fischlschweiger, and Z. Major, "Strength of single-lap-joint assemblies of continuous unidirectional carbon fibre-reinforced thermoplastic matrix tapes under tensile loading", Journal of Composite Materials, p. 0021998314541308, 2014.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top