跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 17:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張繼元
研究生(外文):Chi-Yuan Chang
論文名稱:以都市回收纖維、纖維酒精發酵廢棄物及環境友善膠合劑製作紙張與紙板性質研究
論文名稱(外文):Properties of Paper and Paperboard Products made by Municipal Solid Waste-derived Fiber, Cellulosic Ethanol Fermentation Waste and Environmental Friendly Binders
指導教授:柯淳涵柯淳涵引用關係
口試委員:藍浩繁張慶源張家驥林法勤
口試日期:2013-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:71
中文關鍵詞:蒸煮都市固體廢棄物回收纖維纖維酒精發酵廢棄物硫酸鹽製漿黑液之環境友善膠合劑紙張及紙板物理性質尿素甲醛樹脂
外文關鍵詞:Municipal solid waste-derived fibercellulosic ethanol fermentation wastekraft black liquor derived binderphysical propertiesurea formaldehyde.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著環保意識的崛起,廢棄物再利用成為資源永續再利用的主流。本研究探討以蒸煮處理之都市固體廢棄物回收纖維(Municipal solid waste derived fiber, MSWF)、纖維酒精發酵廢棄物(Cellulosic ethanol fermentation waste, CEFW)及茶葉廢棄物(Tea waste, TW)製作回收紙張及紙板之研究。
都市固體廢棄物回收纖維以155oC蒸煮60分,纖維酒精發酵廢棄物以100:0、90:10、80:20 及50:50的比例混合至蒸煮處理之都市回收纖維及舊報紙(Old newspaper, ONP)。茶葉廢棄物則是以80:20 及50:50比例與舊報紙混合,來製作紙張(60 g/m2) 及紙板(200 g/m2)並分析抗張、破裂及撕裂強度。
本實驗使用硫酸鹽製漿黑液之環境友善膠合劑(BLBD)來提升紙張及紙板的物理性質,結果顯示不論纖維的種類,物理性質隨著平均纖維長度呈線性增加。與商用尿素甲醛樹脂相比,添加BLBD對紙張及紙板物理性質可分別提升50%及85%,若再經過熱壓處理,無法進一步提升紙張及紙板的物理性質。在CEFW和MSWF中添加BLBD,可提升紙張及紙板的抗張及破裂強度,表現出合理替代ONP纖維的潛力。


With a rising environmental conscious, wastes reutilization schemes have become the mainstream of sustainable application of resources. This study investigates the feasibility of paper and paperboard products made by autoclaved treated municipal solid waste-derived fiber (MSWF), rice straw cellulosic ethanol fermentation waste (CEFW) and Tea waste (TW).
MSW were steamed under 155oC for 60 minutes. CEFW were mixed with steamed MSW and old newspaper (ONP) with ratios of 100:0, 90:10, 80:20 and 50:50, various size of TW with ratios of 80:20 and 50:50. Feasibility of paper (60 g/m2) and paperboard (200 g/m2) production were investigated by analysing their tensile strengths, bursting strengths and tearing strengths.
An environmental friendly from kraft black liquor derived binder (BLDB) was used to improve the physical properties of the paper and paperboard products. The values of these properties enhanced linearly with increasing average fiber lengths, regardless of the type of fiber used in the products. BLDB enhanced the physical properties by 50% for papers and 85% for paperboards, and compared with a commercial urea formaldehyde resin. Thermal pressing, however, did not improve the physical properties of the binder enhanced paper products. With the addition of the adhesive binder, CEFW and MSWF showed reasonable substitution potential for ONP fiber by providing suitable tensile and bursting strength in the paper and paperboard.


口試委員審定書 i
謝誌 ii
摘要. iii
ABSTRACT. iv
CONTENTS. v
LIST OF ABBREVIATIONS. viii
FIGURE INDEX ix
TABLE INDEX. x
1. INTRODUCTION 1
2. LITERATURE REVIEWS 5
2.1. Lignocellulose.. 5
2.2. Municipal solid waste (MSW).. 6
2.2.1. The environmental problems caused by municipal solid waste. 6
2.2.2. The advantages of treating MSW by autoclave 8
2.3. Cellulosic ethanol fermentation waste (CEFW) 11
2.3.1. Cellulosic ethanol.. 11
2.3.2. The application and treatment of CEFW 14
2.4. Tea waste (TW).. 14
3. MATERIALS AND METHODS. 17
3.1. MATERIALS. 17
3.1.1. Municipal solid waste-derived fiber (MSWF). 17
3.1.2. Cellulosic ethanol fermentation waste (CEFW) 18
3.1.3. Tea waste (TW).. 18
3.1.4. Old newspaper (ONP). 20
3.1.5. Kraft black liquor (BL) 20
3.1.6. Neutralization black liquor (NBL) 20
3.1.7. Formaldehyde condensation black liquor (MBL) 20
3.1.8. Urea formaldehyde (UF) 21
3.2. METHODS 21
3.2.1. Chemical constituents 21
3.2.2. Gel Permeation Chromatography (GPC). 21
3.2.3. Paper and paperboard products 22
3.2.4. The Physical Strengths of Paper and Paperboard 22
3.2.5. Pulp Morphology Analysis 22
4. RESULTS AND DISCUSSION. 24
4.1. Chemical constituents.. 24
4.1.1. Chemical constituents of MSWF 24
4.1.2. Chemical constituents of CEFW 24
4.1.3. Chemical constituents of TW 25
4.2. The molecular weight of black liquor 25
4.3. Morfi Analysis 26
4.3.1. The Morfi Analysis of ONP.. 26
4.3.2. The Morfi Analysis of CEFW 26
4.3.3. The Morfi Analysis of MSWF 26
4.3.4. The Morfi Analysis of TW 27
4.4. The Physical Properties of Paper and Paperboard. 29
4.4.1. The influence of different manufacturing processes on paper and paperboard properties. 29
4.4.2. The influence of materials on the physical properties. 33
4.4.2.1. The influence of ONP/CEFW on the physical properties 33
4.4.2.2. The influence of MSWF/CEFW on the physical properties.. 36
4.4.2.3. The influence of ONP/MSWF on the physical properties. 39
4.4.2.4. The influence of ONP/TW on the physical properties 41
4.4.3. The influence of adhesives on the physical properties 45
4.4.3.1. The influence of BL on the physical properties 45
4.4.3.2. The influence of NBL on the physical properties.. 47
4.4.3.3. The influence of MBL on the physical properties. 48
4.4.3.4. The influence of UF on the physical properties. 55
4.4.4. Relationship between fiber length and paperboard properties 61
5. CONCLUSION 64
6. REFERENCES 66


林健三、林健榮,「固體廢棄物處理」,高立圖書有限公司,台灣台北(2006)。
郭春寶, 「都市生活垃圾蒸煮處理」,國立中正大學機械工程學系研究報(2009)。
行政院環境保護署,環保統計資料庫「廢棄物管理年報」(2012)。
張家驥、洪臧燮、何瓊芳、謝哲隆、李元陞、陳奕宏、洪文宗、張慶源,
「新一代垃圾資源永續管理方案與評析」,永續產業發展雙月刊,48期,
pp. 51–59 (2010)。
Abu-Qudais, M., Abu-Qdais, H. A., 2000. Energy content of municipal solid waste in
Jordan and its potential utilization. Energ Convers Manage. 41, 983–991.
Alfaro, A., Rivera, A., Perez, A., Yanez, R., Garcia, J. C., Lopez, F., 2009. Integral
valorization of two legumes by autohydrolysis and organosolv delignification.
Bioresour Technol. 100, 440–445.
Avgerinos, G. C., Wang, D. I. C., 1983. Selective delignification for fermentation of
enhancement. Biotechnol Bioeng. 25, 67–83.
Beede, D. N., Bloom, D. E., 1995. The economics of MSW. The World Research
Observer. 10(2), 113–150.
Cardona Alzatea, C. A., Sanchez Toroa, O. J., 2006. Energy consumption analysis of
integrated flowsheets for production of fuel ethanol from lignocellulosic
biomass. Energy. 31, 2447–2459.
Cardona, C. A., Sánchez, Ó. J., 2007. Fuel ethanol production: process design
trends and integration opportunities. Bioresour Technol. 98, 2415–2457.
Chang, C. C., Yang, T. Z., Hung, Z. S., Chang, C. Y., Tseng, J. Y., Ho Chang, C. F.,
Lin, F., Ko, C. H., Chen, Y. H., Shie, J. L., Li, Y. S., Liu, K. W., Wang, S. G.,
2013. Biofiber derived fuel from municipal solid waste. To be published as an
extended abstract no. 12886, 106th Annual Conference, Air & Waste
Management Association, Chicago, IL, USA, June 25-28th, 2013.
Demirbas, A., 2002. Partly chemical analysis of liquid fraction of flash pyrolysis
products from biomass in the presence of sodium carbonate. Energ Convers
Manage. 43, 1801–1809.
Demirbas, A., 2011. Waste management, waste resource facilities and waste
conversion processes. Energ Convers Menage. 109, 59–70.
Eley, M. H., Guinn, G. R., Bagchi, J., 2010. Cellulosic material recovered from steam
classified municipal solid wastes as feedstock, for conversion to fuels and
chemicals. Appl Biochem Biotech. 51–52(1), 387–397.
Fengel, D., Wegener, G., 1984.Wood Chemistry, Ultrastructure, Reactions. Berlin,
New York.
Gray, K.A., Zhao, L., Emptage, M., 2006. Bioethanol. Curr Opin Chem Biol. 10,
141–146.
Hendricks, A. T., Zeeman, G., 2009. Pretreatments to enhance the digestibility of
lignocellulosic biomass. Bioresour Technol. 100,10–18.
Huang, Z. S., Chang, C. C., Ho Chang, C. F., Lin, Y. S., Ji, D. R., Chang, C. Y.,
Tseng, J. Y., Chiang, S. W., Shie, J. L., Chen, Y. H., Ko, C. H., Li, Y. S.,
2013. Autoclaving treatment of wasted disposable bamboo. Submitted to J.
Taiwan Inst. Chem. E.
Hung, Z. S., Chang, C.C., Ho Chang, C. F., Wang, Y. C., Chang, C. Y., Ji, D. R.,
Tseng, J. Y., Ko, C. H., Chen, Y. H., Shie, J. L., Li, Y. S., Wang, S. G., Liu,
K. W., Tseng, S. L., 2012. Autoclaving of waste plastic-free papers for
resource recovery and reutilization. Fresen. Environ. Bull. 21, 2486–2493.
Ko, C. H., Wang, Y. N., Chang, F. C., Chen, J. J., Chen, W. H., Hwang, W. S., 2012.
Potentials of lignocellulosic bioethanols produced from hardwood in Taiwan.
Energy. 44, 329–334.
Lynd, L. R., Weimer, P. J., Van Zyl, W. H., Pretorius, I. S., 2002. Microbial cellulose
utilization: Fundamentals and biotechnology. Microbiol Mol Biol Rev. 66,
506–577.
Malkoc, E., Nuhoglu, Y., 2006. Fixed bed studies for the sorption of chromium(VI)
ontotea factory waste. Chem Eng Sci. 61, 4363–4372.
Malkoc, E., Nuhoglu, Y., 2007. Potential of tea factory waste for chromium(VI)
removal from aqueous solutions: thermodynamic and kinetic studies. Sep Purif
Technol. 54, 291–298.
Ojeda, K., Sánchez, E., Kafarov, V., 2011. Sustainable ethanol production from
lignocellulosic biomass e application of energy analysis. Energy. 36, 2119–
2128.
Oiivares, M., Guzmfin, J. A., Natho, A., Saavedra, A., 1988. Kraft lignin utilization in
adhesives. Recovery of an electric arc furnace flue dust to obtain high grade.
Wood Sci Technol. 22, 157–165.
Papageorgiou, A., Barton, J. R., Karagiannidis, A., 2009. Assessment of the
greenhouse effect impact of technologies used for energy recovery from
municipal waste: A case for England. J Environ Manage. 90(10), 2999–3012.
Quintero, J. A., Montoya, M. I., Sanchez, O. J., Giraldo, O. H., Cardona, C. A., 2008.
Fuel ethanol production from sugarcane and corn: comparative analysis for a
Colombian case. Energy. 33, 385–399.
Saha, B. C., 2003. Hemicellulose bioconversion. J Ind Microbiol Biot. 30, 279–291.
Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgung, J. H.,
Posten, C., Kruse, O., Hankamer, B., 2008. Second generation biofuels:
high-efficiency microalgae for biodiesel production. Bioenergy Research. 1,
20–43.
Shleser, R., Hawaii. Dept. of Business, E.D., Tourism. 1994. Ethanol Production in Hawaii: Processes, Feedstocks, and Current Economic Feasibility of Fuel Grade Ethanol Production in Hawaii: Final Report. Hawaii State Department of Business, Economic Development & Tourism, Energy Division.
Singh, R. P., Tyagi, V. V., Allen, T., Ibrahim, M. H., Kothari, R., 2008. An overview
for exploring the possibilities of energy generation from municipal solid waste
(MSW) in Indian scenario. Renew Sust Energ Rev. 52, 1280–1287.
Singh, R. P., Tyagi, V. V., Allen, T., Ibrahim, M. H., Kothari, R., 2011. An overview
for exploring the possibilities of energy generation from municipal solid waste
(MSW) in Indian scenario. Renew Sust Energ Rev. 15, 4797– 4808.
Sun, Y., Cheng, J., 2002. Hydrolysis of lignocellulosic materials for ethanol
production: a review, Bioresour Technol. 83, 1–11.
Tran, H., Vakkilainnen, K, E., 2008. The kraft chemical recovery process.
http://www.tappi.org/content/events/08kros/manuscripts/1-1.pdf
Tamez Uddin, Md., Akhtarul Islam, Md., Mahmud, S., Rukanuzzaman, Md., 2009.
Adsorptive removal of methylene blue by tea waste. J Haz Mater. 164, 51–60.
Tilman, D., Hill, J., Lehman, C., 2006. Carbon-negative biofuels from low-input
high-diversity grassland biomass. Science. 314, 1598–1600.
USEPA, 2011. Municipal Solid Waste Generation, Recycling, and Disposal in the
United States: Facts and Figures for 2010. Available at:
http://www.epa.gov/wastes/nonhaz/municipal/pubs/msw_2010_rev_factsheet.pdf
Uzun, B. B., Apaydin-Varol, E., Ates, F., Ozbay, N., Pütün A. E., 2010. Synthetic
fuel production from tea waste: Characterisation of bio-oil and bio-char. Fuel.
89, 176–184.
Walter, A., Ensinas, A. V., 2010. Combined production of second-generation
biofuels and electricity from sugarcane residues. Energy. 35, 874–879.
Wang, Y. C., 2011. Autoclaving treatment of municipal solid waste for the recovery
of biomass and its reutilization. Graduate Institute of Environment
Engineering National Taiwan University Master Thesis.
Xu, G., Murakami, T., Suda, T., Matsuzawa, Y., Tania, H., 2009.Two-stage dual
fluidized bed gasification: its conception and application to biomass. Fuel
Process Technol. 90, 137–144.
Yagmur, E., Ozmak, M., Aktas, Z., 2008. A novel method for production of
activated carbon from waste tea by chemical activation with microwave
energy. Fuel. 87,3278–3285.
Ycharts, 2013. Australia Coal Price:82.75 USD/mt for Jun 2013. https://ycharts.com/indicators/australia_coal_price



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文