跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周珊沂
研究生(外文):Shan-Yi Chou
論文名稱:肉桂酸類衍生物抑制真菌之活性
論文名稱(外文):Antifungal Activity of Cinnamic Acid Derivatives
指導教授:張惠婷張惠婷引用關係
口試委員:張上鎮李文昭許富蘭
口試日期:2015-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:94
中文關鍵詞:抗真菌活性黴菌植物病原菌肉桂酸衍生物肉桂醛木材腐朽菌
外文關鍵詞:antifungal activitymildewplant pathogenic fungicinnamic acid derivativestrans-cinnamaldehydewood rotting fungi
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肉桂屬 (Cinnamomum) 植物中含有許多芳香族化合物,其中,肉桂醛已被證實具有許多生物活性。肉桂醛在生合成路徑屬於肉桂酸類衍生物,本研究在探討化學結構與肉桂醛及肉桂酸相似的肉桂酸衍生物,抑制黴菌、木材腐朽菌及植物病原菌生長的能力,期望找出更多具抗真菌效果的化合物,可用於減少真菌造成的危害。
將肉桂酸衍生物分為肉桂酸類化合物、肉桂醛類化合物、烷基肉桂醛化合物三大類,評估對真菌的抗菌能力。trans-cinnamaldehyde對於植物病原菌Fusarium oxysporum、木材腐朽菌Trametes versicolor及黴菌Aspergillus terreus均有良好的抗菌活性。肉桂醛類化合物中的p-methoxycinnamaldehyde、2-methoxy cinnamaldehyde及烷基肉桂醛化合物α-methylcinnamaldehyde、α-amyl cinnamaldehyde、α-hexylcinnamaldehyde均具有顯著抑制植物病原菌中Rhizoctonia solani、Colletotrichum gloeosporioides及黴菌Chaetomium globosm的能力,五種化合物的抗菌活性較trans-cinnamaldehyde更優異。又對於植物病原菌Ganoderma australe及黴菌A. niger而言,抗真菌活性最佳皆為2-methoxycinnamaldehyde,其次為trans-cinnamaldehyde與p-methoxycinnamaldehyde。除此之外,烷基肉桂醛化合物α-methylcinnamaldehyde最能有效抑制植物病原菌F. solani的生長。
化合物2-methoxycinnamaldehyde與trans-cinnamic acid均能有效抑制木材腐朽菌Lenzites betulina的生長;另外,肉桂醛類化合物中2-methoxycinnamaldehyde、p-methoxycinnamaldehyde和4-hydroxy-3-methoxycinnamaldehyde也對木材腐朽菌Laetiporus sulphureus具有比肉桂醛更佳的抗真菌能力。對於木材腐朽菌Gloeophyllum trabeum來說,肉桂醛類化合物α-amylcinnamaldehyde、烷基肉桂醛化合物2-methylcinnamaldehyde均較肉桂醛具有更好的抗真菌效果。


Cinnamon contains many aromatic compounds, among these compounds, trans-cinnamaldehyde has been proven to possess many bioactivities, and which belongs to trans-cinnamic acid derivatives in the biosynthesis pathway. The objective of this research is to find more cinnamic acid dervitaves to against plant pathogenic fungi, wood rotting fungi and mildew, expecting to reduce the damage from fungi diseases.
In order to evaluate antifungal activities of cinnamaldehyde congeners, we classified them into three groups, cinnamic acid congeners, cinnamaldehyde congeners and alkyl cinnamaldehyde congeners. Results demonstrated that trans-cinnamaldehyde had the best antifungal effects against Fusarium oxysporum, Trametes versicolor and Aspergillus terreus. Five compounds, p-methoxycinnamaldehyde, 2-methoxy cinnamaldehyde, α-methylcinnamaldehyde, α-amylcinnamaldehyde and α-hexyl cinnamaldehyde showed superior antifungal activities against Rhizoctonia solani, Colletotrichum gloeosporioides and Chaetomium globosm, which were better than that of trans-cinnamaldehyde. Besides, 2-methoxycinnamaldehyde, trans-cinnamaldehyde and p-methoxycinnamaldehyde were the top three compounds of inhibiting the mycelial growth of Ganoderma australe and Aspergillus niger. Furthermore, α-methylcinnamaldehyde showed the best antifungal ability against F. solani.
With regard to wood rotting fungi, both 2-methoxycinnamaldehyde and trans-cinnamic acid could efficiently inhibited the mycelial growth of Lenzites betulina. And, 2-methoxycinnamaldehyde, p-methoxycinnamaldehyde and 4-hydroxy-3-methoxy cinnamaldehyde presented high antifungal activities against Laetiporus sulphureus. Finally, both α-amylcinnamaldehyde and 2-methoxycinnamaldehyde had better abilities to against Gloeophyllum trabeum than that of trans-cinnamaldehyde.


目 錄
目錄…………………………………………….……………………………….………..I
表目錄………………………………………….………..…………………………..…IV
圖目錄……………………………………………….………...…………….…………IX
摘要…………………………………………………….……………………...……..XIII
Abstract………………………………………………….…………………......……..XIV
壹、前言……………………………………………………………………...…….……1
貳、文獻回顧……………………………………………………………….………..…..3
一、真菌之介紹及分類……………………………..………….……………....…..3
(一)、真菌之分類……………………………………………………………….3
(二)、植物病原菌……………………………………………….………....……5
(三)、木材腐朽菌………………………………………………….……………6
(四)、黴菌………………………………………………………….……………9
二、林木抽出成分之抗真菌活性研究……………………..…….…………..……9
(一)、林木抽出成分之抑制植物病原菌活性………………………………...11
(二)、林木抽出成分之抑制木材腐朽菌活性………………………..………14
(三)、林木抽出成分之抑制黴菌活性………………………….………..…...16
(四)、商用真菌防治劑………………………………….…………………….19
三、肉桂抽出成分抗真菌活性之研究………………………….…….…………22
(一)、肉桂抽出成分之抑制植物病原菌活性………………...……………..23
(二)、肉桂抽出成分之抑制木材腐朽菌活性………………………………..24
(三)、肉桂抽出成分之抑制黴菌活性…………………………..…..………..25
(四)、肉桂醛抗真菌活性之研究……………….………………………..…...26

參、材料與方法………………………………………………………...……………....31
一、化學試藥………………………………………………….……...……..……31
二、植物病原菌菌種…………………………..……..…………….............……..33
三、木材腐朽菌菌種…………………………..……..…………………….……..33
四、黴菌菌種 …………………….………….…….………………………..……34
五、培養基…………..…………………..………………………….........………..34
六、固態平板試驗………………………………………………………………..34
七、統計分析………….……………..………………………….........…….……..35
肆、結果與討論…………………………………………………......……………...…..36
一、肉桂酸類衍生物抑制植物病原菌活性之評估……………….…..…..……..37
(一)、肉桂酸類化合物抗植物病原菌之活性……………….….……..…...37
(二)、肉桂酸類化合物對植物病原菌之半數抑制濃度…….….……..…...39
(三)、肉桂醛類化合物抗植物病原菌之活性………………..…...…...…...42
(四)、肉桂醛類化合物對植物病原菌之半數抑制濃度..….…....……..…..44
(五)、烷基肉桂醛化合物抗植物病原菌之活性………………………..….51
(六)、烷基肉桂醛化合物對植物病原菌之半數抑制濃度….………....…..52
二、肉桂酸類衍生物抑制木材腐朽活性之評估……….…….……………….....58
(一)、肉桂酸類化合物抗木材腐朽菌之活性…………………………..….58
(二)、肉桂酸類化合物對木材腐朽菌之半數抑制濃度…….…...….……..59
(三)、肉桂醛類化合物抗木材腐朽菌之活性……………………….…......61
(四)、肉桂醛類化合物對木材腐朽菌之半數抑制濃度..………......….…..63
(五)、烷基肉桂醛化合物抗木材腐朽菌之活性………………………..….69
(六)、烷基肉桂醛化合物對木材腐朽菌之半數抑制濃度…..…….......…..70
三、肉桂酸類衍生物抑制黴菌活性之評估…………….....………………….....73
(一)、肉桂酸類化合物抗黴菌之活性……..………………………………...73
(二)、肉桂酸類化合物對黴菌之半數抑制濃度…….…………….….……..74
(三)、肉桂醛類化合物抗黴菌之活性…………………………………..…...75
(四)、肉桂醛類化合物對黴菌之半數抑制濃度..……………….…………..77
(五)、烷基肉桂醛化合物抗黴菌之活性…………….………….…………...80
(六)、烷基肉桂醛化合物對黴菌之半數抑制濃度……...……………....…..81
伍、結論……………………………………………………………………...……...….86
陸、參考文獻……………………………………………………….…………..……....88

表目錄
頁次
表 1. 經白腐菌及褐腐菌降解後木材構造及化學特徵之變化
Table 1. Anatomical, chemical features of different types of white and brown wood rotting fungi……………………………………….……..….…………………7
表 2. 經軟腐菌及著色菌降解後木材構造及化學特徵之變化
Table 2. Anatomical, chemical features of different types of soft rot and staining fungi…………………………..………………………………….……….……8
表3. 植物精油之生物活性
Table 3. Essential oils contain bioactive compounds from plants………..……...…..…10
表4. 臺灣肖楠葉部精油倍半萜類化合物抑制植物病原菌之半數抑制濃度
Table 4. IC50 values of sesquiterpenoid constituents of C.s macrolepis var. formosana leaf oil against plant pathogenic fungi………………....….....…...12
表5. β-thujaplicin 及γ-thujaplicin對木材腐朽菌、樹木病原菌及黴菌之IC 50值及MIC值
Table 5. IC 50 (µg/ml) and MIC (µg/ml) values of β-thujaplicin and γ-thujaplicin against wood decay fungi, tree pathogenic fungi and molds……………………...…..13
表6. 植物精油抗A. niger生長之活性
Table 6. Anti-A. niger activity of plant essential oils…………………...…….17
表7. 市面上含有植物天然物的真菌殺菌劑
Table 7. Commercial fungicides in the market with active ingredients from plants…...21
表8. 肉桂植物不同部位之化學組成分
Table 8. Chemical constituents of different parts of cinnamon…………………...……22

表9. 肉桂醛型土肉桂葉部精油抗木材腐朽菌之半數抑制濃度
Table 9. IC50 values of the main constituents from cinnamaldehyde type of C. osmophloeum leaf oil against wood rotting fungi…...………………….….…25
表10. 商用精油化合物對抑制Fusarium oxysporum菌絲生長之效果
Table 10. Effects of commercial essential oils compounds on mycelial growth of F. oxysporum………………...……………………………...……..….27
表11. 肉桂醛 (100 ppm) 抑制木材腐朽菌生長之抑菌指數
Table 11. Antifungal indices of trans-cinnamaldehyde (100 ppm) against wood rotting fungi………………………………………………………..………………….28
表12. 肉桂醛及其他化合物抑制木材腐朽菌生長之IC50及IC90值
Table 12. IC50 and IC90 values of test compounds and in combinations with cinnamaldehyde against wood decay fungi……………………………..…….29
表13. 植物病原菌菌種
Table 13. Strains of plant pathogenic fungi………………………...…………………..33
表14. 木材腐朽菌菌種
Table 14. Strains of wood rotting fungi………………………….....……………..……33
表15. 黴菌菌種
Table 15. Strains of mildew…………………………...…………………………….….34
表16. 作為食用香料之肉桂酸類衍生物
Table 16. Cinnamic acid derivatives used as food flavoring………………………..….37
表17. 肉桂酸類化合物對植物病原菌之抗菌指數 (%)
Table 17. Antifungal index (%) of cinnamic acid congeners against plant pathogenic fungi…………………………………..……………………………………….39


表 18. 肉桂酸類化合物對植物病原菌之IC50值 (μg/mL)
Table 18. IC50 values (μg/mL) of cinnamic acid congeners against plant pathogenic fungi……………………….………………….…………………………….…41
表 19. 肉桂酸類化合物對植物病原菌之IC50值 (mM)
Table 19. IC50 values (mM) of cinnamic acid congeners against plant pathogenic fungi………………………………………………………..……………….…41
表20. 肉桂醛類化合物對植物病原菌之抗菌指數 (%)
Table 20. Antifungal index (%) of cinnamic acid congeners against plant pathogenic fungi…………………………………………………..……………………….43
表 21. 肉桂醛類化合物對植物病原菌之IC50值 (μg/mL)
Table 21. IC50 values (μg/mL) of cinnamaldehyde congeners against plant pathogenic fungi…………………………………………………………….……….….....50
表 22. 肉桂醛類化合物對植物病原菌之IC50值 (mM)
Table 22. IC50 values (mM) of cinnamaldehyde congeners against plant pathogenic fungi…………………………………………………………………..…….....50
表23. 烷基肉桂醛化合物對植物病原菌之抗菌指數 (%)
Table 23. Antifungal index (%) of alkyl cinnamaldehyde congeners against plant pathogenic fungi ………………..…………………………………………….52
表 24. 烷基肉桂醛化合物對植物病原菌之IC50值 (μg/mL)
Table 24. IC50 values (μg/mL) of alkyl cinnamaldehyde congeners against plant pathogenic fungi……………………………………...…………..………...…56
表 25. 烷基肉桂醛化合物對植物病原菌之IC50值 (mM)
Table 25. IC50 values (mM) of alkyl cinnamaldehyde congeners against plant pathogenic fungi……………………………………...………………………………..…..57

表26. 肉桂酸類化合物對木材腐朽菌之抗菌指數 (%)
Table 26. Antifungal index (%) of cinnamic acid congeners against wood rotting fungi…………………………………………………………………………...59
表 27. 肉桂酸類化合物對木材腐朽菌之IC50值 (μg/mL)
Table 27. IC50 values (μg/mL) of cinnamic acid congeners against wood rotting fungi.61
表 28. 肉桂酸類化合物對木材腐朽菌之IC50值 (mM)
Table 28. IC50 values (mM) of cinnamic acid congeners against wood rotting fungi.....61
表29. 肉桂醛類化合物對木材腐朽菌之抗菌指數 (%)
Table 29. Antifungal index (%) of cinnamaldehyde congeners against wood rotting fungi…………………………………………………………………………...62
表 30. 肉桂醛類化合物對木材腐朽菌之IC50值 (μg/mL)
Table 30. IC50 values (μg/mL) of cinnamaldehyde congeners against wood rotting fungi…………………………………………………………..……………….68
表 31. 肉桂醛類化合物對木材腐朽菌之IC50值 (mM)
Table 31. IC50 values (mM) of cinnamaldehyde congeners against wood rotting fungi…………………………………………………………………………...68
表32. 烷基肉桂醛化合物對木材腐朽菌之抗菌指數 (%)
Table 32. Antifungal index (%) of alkyl cinnamaldehyde congeners against wood rotting fungi….…………………………………………………………………....…..69
表 33. 烷基肉桂醛化合物對木材腐朽菌之IC50值 (μg/mL)
Table 33. IC50 values (μg/mL) of alkyl cinnamaldehyde congeners against wood rotting fungi…………………….………………………………..……………..……..72
表 34. 烷基肉桂醛化合物對木材腐朽菌之IC50值 (mM)
Table 34. IC50 values (mM) of alkyl cinnamaldehyde congeners against wood rotting fungi……………..…….………………………………………………..….….72
表35. 肉桂酸類化合物對黴菌之抗菌指數 (%)
Table 35. Antifungal index (%) of cinnamic compounds against mildew………….…..73
表 36. 肉桂酸類化合物對黴菌之IC50值 (μg/mL)
Table 36. IC50 values (μg/mL) of cinnamic acid congeners against mildew…..….....…75
表 37. 肉桂酸類化合物對黴菌之IC50值 (mM)
Table 37. IC50 values (mM) of cinnamic acid congeners against mildew…………..….75
表38. 肉桂醛類化合物對黴菌之抗菌指數 (%)
Table 38. Antifungal index (%) of cinnamaldehyde congeners against mildew…...…..76
表 39. 肉桂醛類化合物對黴菌之IC50值 (μg/mL)
Table 39. IC50 values (μg/mL) of cinnamaldehyde congeners against mildew…….......79
表 40. 肉桂醛類化合物對黴菌之IC50值 (mM)
Table 40. IC50 values (mM) of cinnamaldehyde congeners against mildew……...…....79
表41. 烷基肉桂醛化合物對黴菌之抗菌指數 (%)
Table 41. Antifungal index (%) of alkyl cinnamaldehyde congeners against mildew.....80
表 42. 烷基肉桂醛化合物對黴菌之IC50值 (μg/mL)
Table 42. IC50 values (μg/mL) of alkyl cinnamaldehyde congeners against mildew…..83
表 43. 烷基肉桂醛化合物對黴菌之IC50值 (mM)
Table 43. IC50 values (mM) of alkyl cinnamaldehyde congeners against mildew….….83
表 44. 烷基肉桂醛化合物之化學性質
Table 44. Chemical properties of alkyl cinnamaldehyde congeners...............................85

圖目錄
頁次
圖 1. 真菌經Casearia屬植物抽出物處理4天後之光學顯微影像結果
Fig. 1. Light microscopy analysis of the fungi exposed to the plant extracts for 4 days………………………………………………...………….…...………….15
圖2. F. verticillioides細胞經synthetic cinnamaldehyde處理24小時候之TEM分析
Fig. 2. TEM of F. verticillioides cells after treated with synthetic cinnamaldehyde for 24 h……………………………………………………………………………….24
圖3. 未處理A. flavus之SEM分析
Fig. 3. SEM of untreated A. flavus…………..………………………………..………..30
圖4. A. flavus經trans-cinnamaldehyde燻蒸處理後之SEM分析
Fig. 4. SEM of A. flavus treated with trans-cinnamaldehyde………………….……….30
圖 5. 肉桂酸類衍生物之化學結構
Fig. 5. Structures of trans-cinnamic acid derivatives……….………………………….32
圖 6. 在不同濃度下trans-cinnamic acid對植物病原菌F. solani及R. solani之抗菌指數
Fig. 6. Antifungal index of trans-cinnamic acid against plant pathogenic fungi F. solani and R. solani at different concentrations...........................................................40
圖 7. 不同濃度下trans-cinnamaldehyde和p-methoxycinnamaldehyde對植物病原菌F. solani之抗菌指數
Fig. 7. Antifungal index of trans-cinnamaldehyde and p-methoxycinnamaldehyde against plant pathogenic fungus F. solani at different concentrations...............44
圖8. 在不同濃度下trans-cinnamaldehyde、p-methoxycinnamaldehyde及2-methoxy cinnamaldehyde對植物病原菌G. australe之抗菌指數

Fig. 8. Antifungal index of trans-cinnamaldehyde, p-methoxycinnamaldehyde and 2- methoxycinnamaldehyde against plant pathogenic fungus G. australe at different concentrations.....................................................................................46
圖 9. 在不同濃度下p-methoxycinnamaldehyde和2-methoxycinnamaldehyde對植物病原菌R. solani之抗菌指數
Fig. 9. Antifungal index of p-methoxycinnamaldehyde and 2-methoxycinnam aldehyde against plant pathogenic fungus R. solani at different concentrations..............47
圖 10. p-methoxycinnamaldehyde對植物病原菌R. solani之抑制效果
Fig. 10. Antifungal activity of p-methoxycinnamaldehyde against plant pathogenic fungus R. solani.................................................................................................48
圖 11. 2-methoxycinnamaldehyde對植物病原菌R. solani之抑制效果
Fig. 11. Antifungal activity of 2-methoxycinnamaldehyde against plant pathogenic fungus R. solani.................................................................................................48
圖 12. 不同濃度下α-methylcinnamaldehyde對植物病原菌F. solani之抗菌指數
Fig. 12. Antifungal index of α-methylcinnamaldehyde against plant pathogenic fungus F. solani at different concentrations…………………………………………......53
圖 13. 在不同濃度下α-methylcinnamaldehyde、α-amylcinnamaldehyde及α-hexylcinnamaldehyde對植物病原菌R. solani之抗菌指數
Fig. 13. Antifungal index of α-methylcinnamaldehyde, α-amylcinnamaldehyde and α-hexylcinnamaldehyde against plant pathogenic fungus R. solani at different concentrations………………………………………………………………....55
圖 14. 在不同濃度下trans-cinnamic acid對木材腐朽菌L. betulina之抗菌指數
Fig. 14. Antifungal index of trans-cinnamic acid against wood rotting fungus L. betulina at different concentrations…………………………………………………….60

圖 15. 在不同濃度下trans-cinnamaldehyde及2-methoxycinnamaldehyde對木材腐朽菌L. betulina之抗菌指數
Fig. 15. Antifungal index of trans-cinnamaldehyde and 2-methoxycinnamaldehyde against wood rotting fungus L. betulina at different concentrations…..…..….64
圖 16. 不同濃度下trans-cinnamaldehyde、p-methoxycinnamaldehyde、2-methoxycinnamaldehyde及4-hydroxy-3-methoxycinnamaldehyde對木材腐朽菌L. sulphureus之抗菌指數
Fig. 16. Antifungal index of trans-cinnamaldehyde, p-methoxycinnamaldehyde, 2-methoxycinnamaldehyde and 4-hydroxy-3-methoxycinnamaldehyde against wood rotting fungus L. sulphureus at different concentrations…..………..….65
圖 17. p-methoxycinnamaldehyde對木材腐朽菌L. sulphureus之抑制效果
Fig. 17. Antifungal activity of p-methoxycinnamaldehyde against wood rotting fungus L. sulphureus………………………………………………………….……….....66
圖 18. 4-hydroxy-3-methoxycinnamaldehyde對木材腐朽菌L. sulphureus之抑制效果
Fig. 18. Antifungal activity of 4-hydroxy-3-methoxycinnamaldehyde against wood rotting fungus L. sulphureus………………………….……………………….67
圖 19. 在不同濃度下α-methylcinnamaldehyde與α-amylcinnamaldehyde對木材腐朽菌L. betulina之抗菌指數
Fig. 19. Antifungal index of α-methylcinnamaldehyde and α-amylcinnamaldehyde against wood rotting fungus L. betulina at different concentrations.................70
圖 20. 在不同濃度下trans-cinnamic acid 對黴菌C. globosum之抗菌指數
Fig. 20. Antifungal index of trans-cinnamic acid against mildew C. globosum at different concentrations…….....................................................................……74


圖 21. 在不同濃度下trans-cinnamaldehyde對黴菌A. terreus之抗菌指數
Fig. 21. Antifungal index of trans-cinnamaldehyde against mildew A. terreus at different concentrations.....................................................................................77
圖 22. 在不同濃度下p-methoxycinnamaldehyde對黴菌C. globosum之抗菌指數
Fig. 22. Antifungal index of p-methoxycinnamaldehyde against mildew C. globosum at different concentrations.....................................................................................78
圖 23. p-methoxycinnamaldehyde對黴菌C. globosum之抑制效果
Fig. 23. Antifungal activity of p-methoxycinnamaldehyde against mildew C. globosum…........................................................................................................78
圖 24. 在不同濃度下α-methylcinnamaldehyde、α-amylcinnamaldehyde及α-hexylcinnamaldehyde對黴菌C. globosum之抗菌指數
Fig. 24. Antifungal index of α-methylcinnamaldehyde, α-amylcinnamaldehyde and α-hexylcinnamaldehyde against mildew C. globosum at different concentrations....................................................................................................82



行政院農業委員會 (2013) 植物保護手冊。農業藥物毒物試驗所網站: http://www.tactri.gov.tw/wSite/mp?mp=11
衛生福利部食品藥物管理署 (2013) 衛生福利部食品藥物管理署網站: http://www.fda.gov.tw/TC/index.aspx
王松永、丁昭儀 (1998) 林產學 (上冊)。臺灣商務印書館。臺北。pp. 494-498。
何振隆、蘇裕昌 (2008) 精油之抗菌活性。林業研究專訊15(3): 31-37。
李景仁、馮惠芬 (1992) 圖書館檔案保護技術手冊。檔案出版社。北京。75-79頁。
李鴻麟、夏滄琪、許富蘭、林勝傑 (2005) 新型水溶性木材防腐劑對木材保存性與燃燒性之影響。臺灣林業科學 20(2): 139-156。
夏滄琪、張東柱、傅春旭 (2001) 微波處理應用於紙張滅菌之初探。臺灣林業科學 16(4): 327-332。
夏滄琪 (2003) 黴害紙質文物處理之探討。紙於至善-紙質科技文物保存維護手冊。王玉豐主編。國立科學工藝博物館,臺北。pp. 40-61。
張東柱、謝煥儒、張瑞璋、傅春旭 (1999) 臺灣常見樹木病害。臺灣省林業試驗所。pp. 6-139。
Ainsworth, G. C. (1973) Introduction and keys to higher taxa. In G. C. Ainsworth, F. K. Sparrow, and A. S. Sussman, eds. The fungi: an advanced treatise. Academic Press Inc., New York. pp. 1-7.
Alexopoulos, C. J., C. W. Mims, and M. Blackwell (1996) Introductory Mycology. John Wieley & Sons, Inc., New York. pp. 868.
Aoki, T., K. O’Donnell, and D. M. Geiser (2014) Systematics of key phytopathogenic Fusarium species: currentstatus and future challenges. Journal of General Plant Pathology 80: 189-201.
Bang, K. H., D. W. Lee, H. M. Park, and Y. H. Rhee (2000) Inhibition of fungal cell wall synthesizing enzymes by trans-cinnamaldehyde. Bioscience, Biotechnology, and Biochemistry 64: 1061-1063.


Barrera-Necha, L. L., C. Garduño-Pizaña, and L. J. García-Barrera (2009) In vitro antifungal activity of essential oils and their compounds on mycelial growth of Fusarium oxysporium f.sp. gladioli (Massey) Synder and Hansen. Plant Pathology Journal 8(1): 17-21.
Barrera-Necha, L. L., S. Bautista-Baños , H. E. Flores-Moctezuma, and A. R. Estudillo (2008) Efficacy of essential oils on the conidial germination, growth of Colletotrichum gloeosporiodies (Penz.) Penz. and Sacc and control of postharvest disease in papaya (Carica papaya L.). Plant Pathology Journal 7: 174-178.
Bento, T. S., L. M. B. Torres, M. B. Fialho, and V. L. R. Bononi (2013) Growth inhibition and antioxidative response of wood decay fungi exposed to plant extracts of Casearia species. Letters in Applied Microbiology 58: 79-86.
Böhme, K., J. Barros-Velázquez, P. Calo-Mata, and S. P. Aubourg (2014) Antibacterial, antiviral and antifungal activity of essential oils: Mechanisms and Applications. In T. G. Villa and P. Veiga-Crespo (eds.), Antimicrobial Compounds. Springer, Berlin. pp. 51-81.
Castillo, F., D. Hernández, G. Gallegos, R. Rodríguez, and C. N. Aguilar (2012) Antifungal properties of bioactive compounds from plants. In D. Dhanasekaran (ed.). Antifungal Properties of Bioactive Compounds from Plants, Fungicides for Plant and Animal Diseases. In Tech Inc., Rijeka. pp. 81-106.
Chang, S. T., P. F. Chen, and S. C. Chang (2001) Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. Journal of Ethnopharmacology 77: 123-127.
Chang, S. T. and S. S. Cheng (2002) Antitermitic activity of leaf essential oils and components from Cinnamomum osmophloeum. Journal of Agricultural and Food Chemistry 50: 1389-1392.
Chang, H. T., Y. H. Cheng, C. L. Wu, S. T. Chang, T. T. Chang, and Y. C. Su (2008) Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana Florin leaf against plant pathogenic fungi. Bioresource Technology 99: 6266-6270.
Czerwinska, E. and R. Kowalik (1979) Microbiodeterioration of audiovisual collections 2nd part I Protection of audiovisual records againsts destructive microflora. Part II. Microbial problems in photographic print collections. Restaurator 3: 63-80.
Chen, P. F., S. T. Chang, and H. H. Wu (2002) Antimite activity of essential oils and their components from Cinnamomum osmophloeum. Quarterly Jounal of Chinese Forestry 35: 397-404.
Cheng, S.S., J. Y. Liu, K. H. Tsai, W. J. Chen, and S. T. Chang (2004) Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. Journal of Agricultural and Food Chemistry 52: 4395-4400.
Cheng, S. S., J. Y. Liu, Y. R. Hsui, and S. T. Chang (2006) Chemical polymorphism and antifungal activity of essential oils from leaves of different provenances of indigenous cinnamon (Cinnamomum osmophloeum). Bioresource Technology 97: 306-312.
Cheng, S. S., J. Y. Liu, E. H. Chang, and S. T. Chang (2008) Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Bioresource Technology 99: 5145-5149.
Deacon, J. W. (1997) Mordern Mycology (3rd ed). Blackwell Science, London. 303 pp.
Dugoua, J. J., D. Seely, D. Perri, K. Cooley, T. Forelli, E. Mills, and G. Koren (2007) From type 2 diabetes to antioxidant activity: a systematic review of the safety and efficacy of common and cassia cinnamon bark. Canadian Journal of Physiology and Pharmacology 85(9): 837-847.
Green III, F. and T. P. Schultz (2003) New environmentally-benign concepts in wood protection: The combination of organic biocides and non-biocidal additives. In B. Goodell, D. D. Nicholas and T. P. Schultz eds. Wood Deterioration and Preservation. American Chemical Society, Washington, DC. pp. 378-389.
Hamidpour, R., Mohsen. Hamidpour, S. Hamidpour, and M. Shahlari (2015) Cinnamon from the selection of traditional applications to its noveleffects on the inhibition of angiogenesis in cancer cells and preventionof Alzheimer''s disease, and a series of functions such as antioxidant, anticholesterol, antidiabetes, antibacterial, antifungal, nematicidal,acaracidal, and repellent activities. Journal of Traditional and Complementary Medicine 5: 66-70.
Haygreen, J. G. and J. L. Bowyer (1996) Wood and water. In J. G. Haygreen and J. L. Bowyer, eds. Forest Products and Wood Science. Iowa State University Press, USA. pp. 155-175.

Herald, P. J. and P. M. Davidson (1983) Antibacterial activity of selected Hydroxycinnamic Acids. Journal of Food Science 48(4): 1378-1379.
Hingston, J. A., C. D. Collins, R. J. Murphy and J. N. Lester (2001) Leaching of chromated copper arsenate wood preservatives: a review. Environment Pollution 111(1): 53-66.
Huang, T. C., H. Y. Fu, C. T. Ho, D. Tan, Y. T. Huang, and M. H. Pan (2007) Induction of apoptosis by cinnamaldehyde from indigenous cinnamon Cinnamomum osmophloeum Kaneh through reactive oxygen species production, glutathione depletion, and caspase activation in human leukemia K562 cells. Food Chemistry 103 (2):434-443.
Hughes, K., B. Lawley and K. Newsham (2003) Solar UV-B radiation inhibits the growth of Antarctic terrestrial fungi. Applied and environmental microbiology 69(3): 1488.
Jayaprakasha, G. K, L. J. Rao, and K. K. Sakariah (2002) Chemical composition of volatile oil from Cinnamomum zeylanicum buds. Journal of Biosciences 57 (11-12): 990-993.
Jayaprakasha, G. K., L. Jagan Mohan Rao, and K. K. Sakariah (2003) Volatile constituents from Cinnamomum zeylanicum fruit stalks and their antioxidant activities. Journal of Agricultural Food Chemistry 51: 4344-4348.
Kai, Y. (1991) Chemistry of extractives. In D.N. S. Hon and N. Shiraish (eds.). Wood and Cellulosic Chemistry. Marcell Dekker Inc., New York. pp. 215-255.
Kang, S., J. Demers, M. del Mar Jimenez-Gasco, and M. Rep (2014) Fusarium oxysporum. In R. A. Dean, A. Lichens-Park, C. Kole (eds.) Genomics of Plant-Associated Fungi and Oomycetes: Dicot Pathogens. Springer-Verlag Berlin Heidelberg. pp. 1-239.
Kawanagh, K. (2005) Fungi: Biology and Application. Wiley. England. 267pp.
Khan, M. S. A. and I. Ahmad (2011) In vitro antifungal, anti-elastase and anti-keratinase activity of essential oils of Cinnamomum-, Syzygium- and Cymbopogon-species against Aspergillus fumigatus and Trichophyton rubrum. Phytomedicine 19: 48-55.
Khan, M. S. A., I. Ahmad, and S. S. Cameotra (2013) Phenyl aldehyde and propanoids exert multiple sites of action towards cell membrane and cell wall targeting ergosterol in Candida albicans. Applied Microbiology and Biotechnology 3: 54.
Kombrink, E. and I. E. Somssich (1995) Defense response of plants pathogens. Advances in Botanical Research 21: 1-34.
Li, Q., X. X. Wang, J. G. Lin, J. Liu, M. S. Jiang, and L. X. Chu (2014) Chemical composition and antifungal activity of extracts from xylem of Cinnamomum camphora. Bioresources 9 (2): 2560-2571.
Li, Y., Y. Nie, L. Zhou, S. Li, X. Tang, Y. Ding, and S. Li (2014) The possible mechanism of antifungal activity of cinnamon oil against Rhizopus nigricans. Journal of Chemical and Pharmaceutical Research 6 (5): 12-20.
Manso, S., F. Cacho-Nerin, R. Becerril and C. Nerin (2013) Combined analytical and microbiological tools to study the effect on Aspergillus flavus of cinnamon essential oil contained in food packaging. Food Control 30(2): 370-378.
Martínez-Iñigo, M. J., P. Immerzeel, A. Gutierrez, J. C. del Rio, and R. Sierra-Alvzrez (1999) Biodegradability of extractives in sapwood and heartwood from Scots pine by sapstain and white rot fungi. Holzforschung 53: 247-252.
Martínez, A. T., M. Speranza, F. J. Ruiz-Dueñas, P. Ferreira, S. Camarero, F. Guillén, M. J. Martínez, A. Gutiérrrz, and J. C. Río (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology 8: 195-204.
McNamara, N., H. Black, N. Beresford, and N. Parekh (2003) Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Applied Soil Ecology 24(2): 117-132.
Misra, J. K. and S. K. Deshmukh (2009) Fungi from different environments. Science Publishers, Inc., Enfield. 405pp.
Montegut, D., N. Indictor, and R. Koestler (1991) Fungal deterioration of cellulosic textiles: a review. International Biodeterioration 28 (1-4): 209-226.
Morre-Landecker, E. (1996) Fundamentals of The Fungi. Prentice Hall International, Inc., New Jersey. 482 pp.
Pawar, V. C. and V. S. Thaker (2006) In vitro efficacy of 75 essential oils against Aspergillus niger. Mycoses 49: 316-323.
Pinzari, F., G. Pasquariello, and A. De Mico, (2006) Biodeterioration of paper: A SEM study of fungal spoilage reproduced under controlled conditions. Macromolecules in Cultural Heritage 238(1): 57-66.
Poma, A., G. Pacioni, S. Colafarina, and M. Miranda (1999) Effect of tyrosinase inhibitors on Tuber borchii mycelium growth in vitro. Fems Microbiology Letters 180: 69-75.
Prakash, B., A. Kedia, P. K. Mishra, and N. K. Dubey (2015) Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities-Potentials and challenges. Food Control 47: 381-391.
Presti, L. L., D. Lanver, G. Schweizer, S. Tanaka, L. Liang, M. Tollot, A. Zuccaro, S. Reissmann, and R. Kahmann (2015) Fungal effectors and plant susceptibility. The Annual Review of Plant Biology 66:513–545.
Rao, P. V. and S. H. Gan (2014) Cinnamon: a multifaceted medicinal plant. Evidence-Based Complementary and Alternative Medicine 2014: 1-10.
Rasooli, I., M. B. Rezaei, and A. Allameh (2006) Growth inhibition and morphological alterations of Aspergillus niger by essential oils from Thymus eriocalyx and Thymus x-porlock. Food Control 17: 359-364.
Rodr´ıguez, D. J., D. H. Castillo, J. L. A. S´anchez, R. R. Garc´ıa, J.A. V. Quintanilla, and R. H. L. Saldivar (2007) Antifungal activity in vitro of Flourensia spp. extracts on Alternaria sp., Rhizoctonia solani, and Fusarium oxysporum. Industrial Crops and Products 25: 111-116.
Seidel, V. (2012) Initial and bulk extraction of natural products isolation. In S. D. Sarker and L. Nahar (eds.). Extraction of Plant Secondary Metabolites. Springer, New York. pp.27-74.
Shmulsky, R. and P. D. Jones (2011) Durability and protection. In R. Shmulsky and P. D. Jones (eds.). Forest Products and Wood Sciences: An Introduction. John Willy and Sons, United States. pp. 229-252.
Sigh, T. and A. P. Singh (2012) A review on natural products as wood protectant. Wood Science and Technology 46 (5): 851-870.
Sigma-Aldrich website (2015) Material Safety Data Sheet. http://www. sigma-aldrich.com
Sjöström, E. (1993) Extractves.Wood Chemistry - Fundamentals and Applications (2nd ed). Academic Press Inc., Springer, New York. pp. 92-107.
Suzuki, H., T. Ueda, I. Juranek, S. Yamamoto, T. Katoh, M. Node, and T. Suzuki (2000) Hinokitiol, a selective inhibitor of the platelet type isozyme of arachidonate 12-lipoxygenase. Biochemical and Biophysical Research Communications 275: 885-889.
Tung, Y. T., M. T. Chua, S. Y. Wang, and S. T. Chang (2008) Anti-inflammatory activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresource Technology 99 (9): 3908–3913.


Tung, Y. T., P. L. Yen, C. Y. Lin, and S. T. Chang (2010) Anti-inflammatory activities of essential oils and their constituents from different provenances of indigenous cinnamon (Cinnamomum osmophloeum) leaves. Pharmaceutical Biology 48(10): 130-1136.
Vangalapati, M., N. Sree Satya, D. Surya Prakash, and S. Avanigadda (2012) A review on pharmacological activities and clinical effects of cinnamon species. Research Journal of Pharmaceutical Biological and Chemical Sciences 3 (1): 653-663.
Wang, S. Y., P. F. Chen, and S. T. Chang (2005) Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresource Technology 96: 813–818.
Webster, J. and R. W. S. Weber (2007) Introduction to Fungi. Cambridge Press. London. 841 pp.
Weitz, H. J., C. D. Campbell, and K. Killham (2002) Development of a novel, bioluminescence-based, fungal bioassay for toxicity testing. Environmental Microbiology 4(7): 422-429.
Xing, F., H. Hua, J. N. Selvaraj, Y. Zhao, L. Zhou, and X. Liu (2014) Growth inhibition and morphological alterations of Fusarium verticillioides by cinnamon oil and cinnamaldehyde. Food Control 46: 343-350.
Yeh, H. F. , C. Y. Luo, C. Y. Lin, S. S. Cheng, Y. R. Hsu, and S. T. Chang (2013) Methods for thermal stability enhancement of leaf essential oils and their main constituents from indigenous cinnamon (Cinnamomum osmophloeum). Journal of Agricultural and Food Chemistry 61(26): 6293-6298.
Yen, T. B., H. T. Chang, C. C. Hsieh, and S. T. Chang (2008) Antifungal properties of ethanolic extract and its active compounds from Calocedrus macrolepis var. formosana (Florin) heartwood. Bioresource Technology 99: 4871-4877.
Yen, T. B. and S. T. Chang (2008) Synergistic effects of cinnamaldehyde in combination with eugenol against wood decay fungi. Bioresource Technology 99: 232-236.
Yoon, Mi-Young, B. Cha, and J. C. Kim (2013) Recent trends in studies on botanical fungicides in agriculture. The Plant Pathology Journal 29(1): 1-9.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top