跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 20:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林伯宣
研究生(外文):Po-Hsuan Lin
論文名稱:中台灣孟宗竹根呼吸及其溫度敏感度
論文名稱(外文):Root respiration and its temperature sensitivity in Moso bamboo, central Taiwan
指導教授:久米朋宣
口試委員:陳財輝鄭智馨
口試日期:2015-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:75
中文關鍵詞:根呼吸自營呼吸溫度敏感度Q10孟宗竹
外文關鍵詞:Root respirationautotrophic respirationtemperature sensitivityQ10Moso bamboo
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
森林土壤呼吸所排放的二氧化碳,其占所有森林總GPP 50%以上,為第二大生態系碳排放來源;而自營呼吸在前人研究中顯示其碳排放量佔土壤呼吸30–70%,是土壤呼吸中不可忽略的一大部份;近來來孟宗竹的擴張成為了東亞的一大課題,前人研究顯示,在台大實驗林的孟宗竹的土壤呼吸以及土壤呼吸對溫度的敏感度高於其他氣候帶森林,而在在全球溫度逐年升高的情況下,孟宗竹將對碳循環有所影響。
本研究最大的目的為估計孟宗竹林土壤的自營呼吸在總土壤呼吸的貢獻量和找出孟宗竹土壤呼吸的高溫度敏感度的控制因子;為達此目的,此研究有四個小目的;一利用Core sample法Trenching法推估異營呼吸和自營呼吸以及不同型態根的年碳排放量;二了解自營呼吸以及不同型態根呼吸其對溫度的敏感度的高低,並且了解室外(Annual Q10)以及室內實驗(Lab Q10)的差異;三找出其自營呼吸在溫度敏感度的影響因子,此篇實驗利用碳氮元素分析去做解釋;四利用roots order法檢視細根在此篇研究的定義是否可行。
從2014年3月到2015年2月,此研究利用了兩種方法來分離自營呼吸和異營呼吸,分別是Trenching 和 Core sample,在Core sample 的方法中除了可分離自營呼吸外,還可細分其不同型態根的呼吸(細根、粗根、地下莖),而在靠近孟宗竹林附近的柳杉林同樣也進行core sample 的實驗;在core sample的實驗中,除了進行室外的實驗測量,為了確定溫度對於根呼吸的影響,此研究進行了室內實驗(Incubation法),利用這兩種方法來計算細根、粗根、地下莖以及總體自營呼吸的Q10;除此之外利用core sample所蒐集的根樣本除了帶回來進行室內的實驗外也測定了不同類型根的單位面積乾重以及氮含量。為了瞭解細根的定義在此篇的可行性,我們進行root order法的實驗,分出不同的root order根樣本並且測量其粒徑、呼吸量、氮含量;
在孟宗竹中自營呼吸分別在兩種方法中佔了62% - 65%於土壤呼吸,其年排放量大約是501 - 587 g C m-2yr-1,其對土壤呼吸的貢獻比例和年排量皆大於同氣候帶的溫帶森林和闊葉樹林。,而細根年碳排放量約為317g C m-2yr-1、粗根為184 g C m-2yr-1地下莖為54 g C m-2yr-1;細根呼吸佔了約55%的自營呼吸;
為了隔離溫度以外的因子做為控制因素,我們進行了Incubation,發現根呼吸會隨著溫度上升而增加,而其呼吸對溫度的敏感度則會下降;而不同季節的根呼吸溫度敏感度也不同,其Q10在夏秋之季擁有比較高的值。在trenching和cores sample 兩個方法中,自營呼吸的Q10 (=3.61-3.92)比異營呼吸(2.45-2.84)來的大,而細根呼吸在整個自營呼吸中擁有最大的溫度敏感度(4.95)其值高於粗根(3.74)以及地下莖(0.19)且也發現細根呼吸的溫度敏感度有季節性的變異,在進行氮含量分析時,比起粗根及地下莖,細根有最高的氮含量,除此之外,其氮含量也有明顯的季節變異,其趨勢與細根Q10季節性變異相似。可以推斷其細根可能為土壤呼吸高敏度的重要關鍵,而其原因可能為細根的高氮含量。
在root order的實驗中,發現孟宗竹order 2 和order 3的根呼吸有明顯的差距,而root order的粒徑為3.1mm,與此篇研究的細根定義相去不遠(2 mm),因此在此篇細根的定義是可行的。
整體而言,我們了解到自營呼吸為其孟宗竹高土壤呼吸以及溫度敏感度的一大部分原因,細根可能為最重要的影響關鍵。



CO2 released by soil respiration (Rs) accounted for about 50% of GPP at the global scale and Rs is the second largest carbon emission in the ecosystem. Rs consist of soil autotrophic respiration (Ra) and soil heterotrophic respiration (Rh), and Ra may account for 30 – 70% of Rs. In the Ra, fine roots with smaller radius (< 2 mm) has higher respiration. Previous studies indicated that the Moso bamboo invasion in East Asian have been important issue in recent year, which might change local carbon balance through the changes in soil carbon cycling. Previous study indicated that Rs and temperature sensitivity (Q10) of a Moso bamboo forest in the NTU forest were higher than those of other types of forests.
The aim in this study is to estimate contribution of autotrophic respiration (Ra) to total Rs and to clarify mechanism of high temperature sensitivity of Rs in the Moso bamboo forest. To this aim, this study used trenching methods and core sample methods to separate Rh and Ra. As well, core sample methods enabled us to separate fine root (Rf) and coarse root (Rc) respiration from total Rs. Second, we used field experiments and lab experiments to estimate the Q10 in Rh, Ra, Rf, and Rc. Third, this study examined factors of the temperature sensitivity of the roots respiration using N concentration analysis. Forth, this study examined the definition of diameter based fine root using root orders, N concentration, and respiration rate
In the Moso bamboo forest, this study conducted trenching methods to separate Ra from total Rs and also conducted core sample methods to separate Ra and Rh form Rs from March 2014 to February 2015, also separated the Rf, Rc, and rhizome respiration (Rr) from Ra. The core sample methods were also conducted in C. japonica forest which is near the Moso bamboo forest. Based on the field measurements, annual Q10 was determined for Rh, Ra, Rf, Rc and Rr. The roots samples collected by core sample were brought to the lab to quantify monthly Q10 of Rf, Rc and Rr with N analysis and dry weight measurements.
The result showed Ra separated from trenching methods and core sample methods had almost same values with same seasonal variation patterns. The Ra accounted about 62 - 65% of the total Rs and the annual Ra was 507 - 587 g C m-2yr-1. The core sample methods indicated Rf had highest contribution to the Ra, and that the annual Rf, Rc and Rr was about 317 g C m-2yr-1, 184 g C m-2yr-1 and 54 g C m-2yr-1, respectively. Rf accounted about 55 % to toal Ra. Rf had the largest contribution of Ra in Moso bamboo.
This study indicated annual Q10 of Ra (=3.61-3.92) was larger than that of Rh (2.45-2.84) in both trenching method and core sample method. In the core sample method, Rf in field measurement had higher Q10 value (4.95) than Rc (3.74) and Rr (0.19). Q10 of Ra in Moso bamboo forest was higher than that of C. japonica in both field measurements and incubation treatments. Besides, incubation experiment indicated Q10 of Rf had distinctive seasonal change with higher value in summer. The N analysis indicated that Rf had the highest N concentration than Rc and Rr, and that N concentration of Rf had distinctive seasonal change with higher value in summer. Thus, higher N concentration of Rf is related to high respiration and temperature sensitivity of Rf.
Root respiration of Moso bamboo had distinctive change between order 2 and order 3 root. Diameter of order 2 was about 3.1 mm, what was similar with the definition in our study (2 mm). Thus the definition of Moso bamboo fine root in this study was probably valid.
Overall, this study clarified Ra was an important part in Rs of the Moso bamboo forest compared with Rh, and fine roots were the main CO2 source in Ra with high Q10. Thus, this study indicated Ra and fine root may be the key of high Q10 of Rs in the Moso bamboo forest.


摘要 II
Abstract IV
Chapter 1 Introduction 5
Chapter 2 literature review 8
2-1 Soil respiration 8
2-2 Autotrophic respiration and heterotrophic respiration 9
2-3 Environmental factors of soil respiration 12
2-4 Roots structure 15
2-5 Factors for temperature sensitivity of roots respiration 17
2-6 Moso Bamboo 18
Chapter 3 Methods 19
3-1 Study site 19
3-2 Base line soil respiration measurement 21
3-3 Environmental factors measurement 22
3-4 Autotrophic respiration measurement 23
3-5 N concentration and Dry weight 26
3-6 Roots structure 27
3-7 Analysis 29
Chapter 4 Result and discussion 31
4-1 Soil respiration 31
4-2 Autotrophic respiration vs. Heterotrophic respiration 32
4-3 Roots respiration 39
4-4 Roots respiration and its temperature sensitivity 41
4-5 The Q10 value in each part of the root respiration 52
4-6 Factors determining temperature sensitivity of root respiration 54
4-7 Roots orders and roots respiration 59
Chapter 5 Conclusion 62
Reference 65
Appendix 70



Figure
Figure 1 Branch root order system which separate different order root (Pregitzer, 2002) 15
Figure 2 Monthly average soil temperature and soil water content from 20 locations from March 2014 to February 2015. 34
Figure 3 Monthly average soil respiration measured in 20 locations from March 2014 to February 2015. 34
Figure 4 Autotrophic respiration and heterotrophic respiration in two methods from March 2014 to Feb 2015: 35
Figure 5 Proportion of the Ra and Rh in soil respiration. 36
Figure 6 Annual autotrophic respirations measured by trenching method in the previous studies and in this study: 37
Figure 7 Different type roots respiration in total autotrophic respiration measured by core sample method: 42
Figure 8 Different type roots respiration proportion in total autotrophic respiration measured by core sample method: 43
Figure 9 Different type roots dry weight measured by core sample method: 44
Figure 10 Different type roots respiration based on dry weight measured by core sample method: 45
Figure 11 Relationship between the Moso bamboo roots respiration measured by core sample method and soil temperature. 46
Figure 12 Relationship between the Moso bamboo roots respiration measured by core sample method and soil temperature. 46
Figure 13 Roots respiration of Moso bamboo in different incubation temperature stage (5℃, 15℃, 25℃, 35℃) every month 47
Figure 14 Roots respiration of C. japonica in different incubation temperature stage (5℃, 15℃, 25℃, 35℃) every month 48
Figure 15 N concentration in different root types derived by core sample method: 55
Figure 16 Relationship between the N concentration and roots respiration of Moso bamboo and C. japonica. 56
Figure 17 Average N concentrations of fine roots in this study (Moso bamboo and C. japonica) and the other vegetations. 57
Figure 18 Average fine roots respiration in this study and other vegetation. 57
Figure 19 Result of the roots orders experiment: 60
Table
Table 1 Q10 of roots respiration of Moso bamboo in different incubation stage in each month. 50
Table 2 Q10 of roots respiration of C. japonica in different incubation stage in each month. 51




Boone, R. D., Nadelhoffer, K. J., Canary, J. D., & Kaye, J. P. (1998). Roots exert a strong influence on the temperature sensitivityof soil respiration. Nature, 396(6711): 570-572.
Bouwmann, A. F., & Germon, J. C. (1998). Special issue: soils and climate change: introduction. Biology and Fertility of Soils, 27, 219.
Bowden, R. D., Nadelhoffer, K. J., Boone, R. D., Melillo, J. M., & Garrison, J. B. (1993). Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Canadian Journal of Forest Research, 23(7): 1402-1407.
Burton, A., Pregitzer, K., Ruess, R., Hendrick, R., & Allen, M. (2002). Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes. Oecologia, 131(4): 559-568.
Conant, J., & Teichner, P. (2004). Grope cobordism of classical knots. Topology, 43(1): 119-156.
Davidson, E. A., Janssens, I. A., & Luo, Y. (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12(2): 154-164.
Edwards, C. A., Reichle, D. E., & Crossley, D. A., Jr. (1970). The Role of Soil Invertebrates in Turnover of Organic Matter and Nutrients. In D. Reichle (Ed.), Analysis of Temperate Forest Ecosystems, 1: 147-172.
Hanson, P. J., Edwards, N. T., Garten, C. T., & Andrews, J. A. (2000). Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry, 48(1): 115-146.
Hendrick, R. L., & Pregitzer, K. S. (1993). The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Canadian Journal of Forest Research, 23(12): 2507-2520.
Hesieh, I. F. (2013). Temporal varsion in soil CO2 efflux and the controlling factors in a Moso bamboo forest, central Taiwan. Master thesis in National Taiwan Unversity.
Irvine, J., & Law, B. E. (2002). Contrasting soil respiration in young and old-growth ponderosa pine forests. Global Change Biology, 8(12): 1183-1194.
Janssens, I. A., Lankreijer, H., Matteucci, G., Kowalski, A. S., Buchmann, N., Epron, D., & Valentini, R. (2001). Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 7(3): 269-278.
Lamade, E., Djegui, N., & Leterme, P. (1996). Estimation of carbon allocation to the roots from soil respiration measurements of oil palm. Plant and Soil, 181(2): 329-339.
Linn, D. M., & Doran, J. W. (1984). Effect of Water-Filled Pore Space on Carbon Effect of Water Filled Pore Space on Carbon Dioxide and Nitrous Oxide Production in Tilled and Non-Tilled Soils. Soil Science Society of America Journal, 48: 1267-1272.
Lin, M.Y. (2014). Soil Carbon Cycling of a Moso Bamboo Forest in Xitou, Central Taiwan. Master thesis in Natinal Taiwan University.
Dioxide and Nitrous Oxide Production in Tilled and Nontilled Soils. Soil Science Society of America Journal, 48(6): 1267-1272.
Lloyd, J., Taylor, J. A. (1994). On the Temperature Dependence of Soil Respiration. Functional Ecology, 8(3): 315-323.
Longdoz, B., Yernaux, M., & Aubinet, M. (2000). Soil CO2 efflux measurements in a mixed forest: impact of chamber disturbances, spatial variability and seasonal evolution. Global Change Biology, 6(8): 907-917.
Malhi, Y., Baldocchi, D. D., & Jarvis, P. G. (1999). The carbon balance of tropical, temperate and boreal forests. Plant, Cell & Environment, 22(6): 715-740.
Okutomi, K., Shinoda, S., & Fukuda, H. (1996). Causal analysis of the invasion of broad-leaved forest by bamboo in Japan. Journal of Vegetation Science, 7(5): 723-728.
Pregitzer, K. S. (2002). Fine roots of trees – a new perspective. New Phytologist, 154(2): 267-270.
Pregitzer, K. S., DeForest, J. L., Burton, A. J., Allen, M. F., Ruess, R. W., & Hendrick, R. L. (2002). Fine root architecture on nine northe american trees. Ecological Monographs, 72(2): 293-309.
Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44(2): 81-99.
Russell, C. A., & Voroney, R. P. (1998). Carbon dioxide efflux from the floor of a boreal aspen forest. I. Relationship to environmental variables and estimates of C respired. Canadian Journal of Soil Science, 78(2): 301-310.
Ryan, M. G., Hubbard, R. M., Pongracic, S., Raison, R. J., & Mcmurtrie, R. E. (1996). Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiology, 16(3): 333-343.
Ryan, M. G., Lavigne, M. B., & Gower, S. T. (1997). Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. Journal of Geophysical Research: Atmospheres, 102(D24): 28871-28883.
Trumbore, S. E., Davidson, E. A., Barbosa de Camargo, P. n., Nepstad, D. C., & Martinelli, L. A. (1995). Belowground cycling of carbon in forests and pastures of eastern Amazonia. which journal. Global Biogeochemical Cycles, 9(4): 515 - 528.
Vant Hoff, J. H. (1884). Studies of chemical dynamics. Frederick Muller & Co, Amsterdam, 184.
Vargas, R., & Allen, M. F. (2008). Environmental controls and the influence of vegetation type, fine roots and rhizomorphs on diel and seasonal variation in soil respiration. New Phytologist, 179(2): 460-471.
Volder, A., Smart, D. R., Bloom, A. J., & Eissenstat, D. M. (2005). Rapid decline in nitrate uptake and respiration with age in fine lateral roots of grape: implications for root efficiency and competitive effectiveness. New Phytologist, 165(2): 493-502.
Warembourg, F. R., & Paul, E. A. (1977). Seasonal transfers of assimilated 14C in grassland: Plant production and turnover, soil and plant respiration. Soil Biology and Biochemistry, 9(4): 295-301.
Widén, B., & Majdi, H. (2001). Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal variation. Canadian Journal of Forest Research, 31(5): 786-796.
William H. Schlesinger & Jeffrey A. Andrews (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48 (1), 7-20.
Winkler, J. P., Cherry, R. S., & Schlesinger, W. H. (1996). The Q10 relationship of microbial respiration in a temperate forest soil. Soil Biology and Biochemistry, 28(8), 1067-1072.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文