跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/02 11:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宜蓁
研究生(外文):I-Chen Lin
論文名稱:溪頭柳杉人工林微氣象特性與能量收支之研究
論文名稱(外文):Micrometeorological Characteristics and Energy Budget in a Cryptomeria japonica Plantation at Xitou area
指導教授:陳明杰陳明杰引用關係
口試委員:久米朋宣盧惠生魏聰輝
口試日期:2015-06-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:63
中文關鍵詞:柳杉人工林微氣象因子能量收支包溫比能量平衡法
外文關鍵詞:Japanese cedar (Cryptomeria japonica) plantationmicro-scale meteorological factorsenergy budgetBowen ratio energy balance method (BREB)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的為探討柳杉人工林於不同高度的氣溫、水汽壓等之季變化和日變化特性,不同高度層能量收支的乾濕季變化,以及降雨對能量收支日變化的影響等。研究地點位於臺大實驗林溪頭營林區第3林班173號柳杉人工林,收集2014年1月22日至2015年1月21日通量塔的降雨量、淨輻射通量、土壤熱通量、氣溫、相對濕度、大氣壓力等監測資料,並利用包溫比法估算淨輻射通量分配於顯熱通量與潛熱通量等。資料整理分析時,定義春季為3月~5月、夏季為6月~8月、秋季為9月~11月與冬季為12月~2月,以及定義濕季為4月~9月、乾季為10月~3月。
林分之微氣象及能量收支特性因不同高度層而異。研究結果顯示,四季皆於枝葉密集之樹冠上層(高度23.3 m)監測到最高的氣溫及水汽壓,且高度23.3 m以下的氣溫及水汽壓垂直變化隨著高度下降而降低。然而,於林下植物層上方(高度2.3 m),因為植物的蒸發散與土壤蒸發作用,使得此高度於四季皆有較高的水汽壓值。
樹冠層上方(高度32.5 m)之淨輻射通量全年平均為68.97 W m-2,於夏季最高78.84 W m-2,冬季最低60.31 W m-2,受到樹冠層遮蔽、反射與吸收的影響,樹冠上層(高度24.8 m)及林下植物層上方(高度3.8 m)的淨輻射通量僅佔樹冠層上方之10.1%及6.0%。此外,由於季節、地形與太陽高度角較低等因素影響,利用Beer-Bouguer Law計算淨輻射通量經過樹冠層的消散係數,冬季為1.11最高,春季為1.00最低。土壤熱通量全年平均為–0.68 W m-2,於濕季時為吸熱的正值,於乾季時轉變為放熱的負值。
利用包溫比法估算能量分量結果,樹冠層上方的顯熱通量大多時候為正值,但於降雨、陰天或有霧的天氣型態時,有時會出現負值的情形,即顯熱通量的能量向下傳遞。研究期間夏季之降雨天數為53天,平均顯熱通量為–4.21 W m-2。由於濕季時淨輻射通量高且蒸發散作用旺盛,所以樹冠層上方有較高的潛熱通量,佔淨輻射通量之95.5%,反之,於淨輻射通量與降雨量皆較低的乾季時,潛熱通量佔淨輻射通量之61.6%。
研究期間,樹冠層上方與樹冠上層皆以潛熱通量的形式為主,分別佔淨輻射通量之79.7%與102.1%,顯熱通量次之,土壤熱通量分別佔–1.1%與–13.5%;樹冠中層因周圍枝葉較稀疏,故以顯熱通量為主要能量消耗的型式,其佔淨輻射通量66.5%,而土壤熱通量佔–10.1%;林下植物層上方受到植物蒸發散與土壤蒸發作用的影響,潛熱通量佔淨輻射通量之190.9%,為主要消耗能量的型式,且土壤熱通量佔–15.8%。由結果發現,土壤熱通量對於離地表較近的高度層之能量收支有較大的影響。
天氣型態對淨輻射通量的影響很大,無降雨期間,因霧或陰天等天氣型態的不同,使得淨輻射通量與晴天的差異很大。並且,受到陰天或霧的影響,顯熱通量有時於白天出現負值。夏季時,降雨期間由於淨輻射通量下降,潛熱通量降低,冬季時,無降雨期間的顯熱通量高於潛熱通量,但於降雨期間出現潛熱通量高於顯熱通量。


This research was to investigate the seasonal and diurnal change of air temperature and water vapor pressure at different height, the energy budget at different height layer in dry and wet season, and the diurnal change of energy budget during rainy day in a Japanese cedar (Cryptomeria japonica) plantation. The study site was located at the third compartment in Xitou tract, NTU Experimental Forest. Rainfall, net radiation flux, soil heat flux, air temperature, relative humidity and barometric pressure were collected derived from flux tower during 22 January 2014 and 21 January 2015. Bowen ratio energy balance method (BREB) was used to estimate sensible heat flux and latent heat flux, and discuss the net radiation flux assigned to sensible heat flux and latent heat flux. In data analysis, defined spring was during March to May, summer was during June to August, autumn was during September to November and winter was during December to February. In addition, wet season was during April to September and dry season was during October to March.
The micro-scale meteorological factors and energy budget characteristics were different at different height layer. In this study, the monitored highest air temperature and water vapor pressure appeared in the upper-canopy layer (23.3 m height) in four seasons. Air temperature and water vapor pressure down from 23.3 m height were lower with reduced height. However, owing to the evapotranspiration by understories and soil evaporation, the water vapor pressure increased above the under-stories layer (2.3 m height).
The average net radiation measured above-canopy (32.5 m height) was 68.97 W m-2. It was the highest in summer (78.84 W m-2) and the lowest in winter (60.31 W m-2). The radiation could be sheltered, reflected and absorbed by canopy, so the ratio of net radiation measured at upper-canopy layer (24.8 m height) and above under-stories layer (3.8 m height) were 10.1% and 6.0% to above the canopy. Furthermore, the extinction coefficient calculated by Beer-Bouguer Law that was influenced by season, topography and solar altitude angle, was highest in winter (1.11) and lowest in spring (1.00). Besides, the average soil heat flux was –0.68 W m-2, and it was endothermic and exothermic in wet season and dry season.
By using BREB method to estimate energy flux above canopy, the value of sensible heat flux was positive at most of the time. And it was negative in rainy, cloudy or foggy day, which usually occurred in wet season. Particularly, 53 rainy days occurred in summer, so sensible heat flux was –4.21 W m-2. In addition, impacted by sufficient net radiation and rainfall, latent heat flux ratio was 95.5% to net radiation flux in wet season, otherwise, it was only 61.6% in dry season.
In research period, the energy was mainly took advantage of latent heat flux at above-canopy and upper-canopy layer, which was 79.7% and 102.1% to net radiation flux while the soil heat flux was –1.1% and –13.5%. Because the leaves were few at the middle-canopy layer, the sensible heat flux became the main type to consume energy (66.5%) while the soil heat flux was –10.1%. Above under-stories layer, latent heat flux and soil heat flux were 190.9% and–15.8%. The result also revealed that the emitted soil heat flux could mainly affect energy budget of nearing forest floor.
The weather condition played an important role in net radiation flux. The net radiation flux was different between foggy, cloudy and sunny day. And sensible heat flux was negative in rainy day. Furthermore, because the net radiation flux was decreased in rainy day, the latent heat flux was diminished in summer. In winter, latent heat flux was higher than sensible heat flux in rainy day, which was different from sunny day.

中文摘要 I
ABSTRACT III
目錄 VI
圖目錄 VII
表目錄 VIII
第一章 前言 1
第二章 文獻回顧 4
第一節 不同地區與林型的能量收支特性 4
第二節 森林地區不同高度層能量收支之研究 7
第三節 林分不同高度氣溫與水汽日變化之研究 11
第三章 研究材料與方法 15
第一節 研究區域概況 15
第二節 研究材料 17
第三節 研究方法 17
一、顯熱通量與潛熱通量估算方法 17
二、淨輻射通量分析方法 22
第四章 結果與討論 24
第一節 降雨量 24
第二節 淨輻射通量 25
第三節 氣溫 30
第四節 水汽壓與水汽壓差 34
第五節 不同高度層能量收支乾濕季變化 38
一、不同高度層能量收支結果 38
二、不同高度層能量收支分配特性 41
第六節 樹冠層上方無降雨與降雨期間能量收支日變化 45
第五章 結論 55
參考文獻 57
附錄 63

王亞男、蔡明哲、江博能、洪志遠、賴彥任、張振生、魏聰輝、衛強、余瑞珠、鄭景鵬 (2012) 溪頭地區二氧化碳通量長期生態監測試驗地人工林林分構成、林下植物組成之特徵。臺灣大學生物資源暨農學院實驗林研究報告 26(3):225-239。
何鎮平 (1977) 臺大實驗林溪頭人工林森林土壤性質之分析。國立臺灣大學森林學研究所碩士論文。
林奐慶 (2008) 柳杉人工林微環境特性與疏伐產生的效應。國立臺灣大學生物資源暨農學院森林環境暨資源學系碩士論文。
林務局 (1995) 第三次台灣森林資源及土地利用調查。
周文進 (2009) 蓮華池天然闊葉林能量收支之研究。國立臺灣大學森林環境暨資源學系碩士論文(未發表)。
洪敏勝 (2010) 山坡地區森林次冠層通量特徵之研究。國立臺灣大學理學院地理環境資源研究所碩士論文。
陳紫蛾、張石角 (1987) 溪頭森林遊樂區之地質、地形及其發展史。台大實驗林研究報告 1(1):63-76。
許祐昇 (2013) 溪頭地區柳杉人工林降雨再分佈之研究。國立臺灣大學生物資源暨農學院森林環境暨資源學系碩士論文。
褚侯森 (2008) 複雜地形中的通量量測—以棲蘭山台灣扁柏森林樣區為例。國立東華大學自然資源管理研究所碩士論文。
臺大實驗林 (2009) 臺大實驗林風華一甲子。林業特刊,第25號,臺大實驗林管理處,南投縣竹山鎮,227頁。
鄭森松、陳信佑 (Eds.) (2009) 國立臺灣大學生物資源暨農學院實驗林管理處六十五年之氣象(1941-2005)。林業特刊,第26號,臺大實驗林管理處,南投縣竹山鎮,91頁。
魏聰輝、張振生、陳信雄 (2005) 塔塔加地區降雪期間之熱量收支。臺灣大學生物資源暨農學院實驗林研究報告 19(2):161-175。
魏聰輝、賴彥任、張振生、陳信雄、林博雄 (2008) 溪頭地區崩塌地人工植群復育過程之熱量收支。作物、環境與生物資訊 5(4):217-226。
魏聰輝、賴彥任、張振生、沈介文、洪志遠、王亞男、陳明杰 (2011) 溪頭地區霧分布特性初探。臺灣大學生物資源暨農學院實驗林研究報告 25(2):149-160。
Allen, R.G., Pereira, L.S., Howell, T.A. and Jensen, M.E., 2011. Evapotranspiration Information Reporting: I. Factors Governing Measurement Accuracy. Agricultural Water Management 98: 899-920.
Arain, M.A., Shuttleworth, W.J., Farnsworth, B., Adams, J. and Sen, O.L., 2000. Comparing Micrometeorology of Rain Forests in Biosphere-2 and Amazon Basin. Agricultural And Forest Meteorology 100(4): 273-289.
Arain, M.A., Black, T.A., Barr, A.G., Griffis, T.J., Morgenstern, K. and Nesic, Z., 2003. Year-Round Observations of the Energy and Water Vapour Fluxes Above a Boreal Black Spruce Forest. Hydrological Processes 17(18): 3581-3600.
Baldocchi, D.D., Matt, D.R., Hutchison, B.A. and McMillen, R.T., 1984. Solar Radiation within An Oak—Hickory Forest: An Evaluation of the Extinction Coefficients for Several Radiation Components during Fully-Leafed and Leafless Periods. Agricultural and Forest Meteorology 32(3-4): 307-322.
Baldocchi, D.D. and Vogel, C.A., 1997. Seasonal Variation of Energy and Water Vapor Exchange Rates Above and Below a Boreal Jack Pine Forest Canopy. Journal of Geophysical Research 102(D24): 28939-28951.
Baldocchi, D.D., 2003. Assessing the Eddy Covariance Technique for Evaluating Carbon Dioxide Exchange Rates of Ecosystems: Past, Present and Future. Global Change Biology 9(4): 479-492.
Blanken, P.D., Black, T.A., Yang, P.C., Neumann, H.H., Nesic, Z., Staebler, R., den Hartog, G., Novak, M.D. and Lee, X., 1997. Energy Balance and Canopy Conductance of a Boreal Aspen Forest: Partitioning Overstory and Understory Components. Journal of Geophysical Research 102(D24): 28,915-28,927.
da Rocha, H.R., Goulden, M.L., Miller, S.D., Menton, M.C., Pinto, L.D.V.O., de Freitas, H. C. and Figueira, A.M.S., 2004. Seasonality of Water and Heat Fluxes Over a Tropical Forest in Eastern Amazonia. Ecological Applications 14(4): 22-32.
FLUXNET. [http://fluxnet.ornl.gov/].
Hale, S.E., 2003. The Effect of Thinning Intensity on the Below-Canopy Light Environment in A Sitka Spruce Plantation. Forest Ecology and Management 179: 341-349.
Heusinkveld, B.G., Jacobs, A.F.G., Holtslag, A.A.M. and Berkowicz, S.M., 2004. Surface Energy Balance Closure in an Arid Region: Role of Soil Heat Flux. Agricultural and Forest Meteorology 122: 21-37.
Hsia, Y.J., King, H.B., Horng, F.W., Lin, T.C.,Wang, L.J., Lin., K.C, Hamburg, S.P., 1998. Biogeochemistry and hydrology of a moist, subtropical, mixed evergreen forest: use the small waterhsed technique. In: Iwakuma, T., (Ed.), Long-Term Ecological Research in the East Asia-Pacific Region: Biodiversity and Conservation of Terrestrial and Freshwater Ecosystems. Proceedings of the Second East Asian-Pacific Regional Conference on Long-Term Ecological Research, Tsukuba, Japan 3-5 March, 1997, CGER Report, CGER-I031-’98: pp. 127-138.
Idso, S.B., Aase, J.K. and Jackson, R.D., 1975. Net Radiation-Soil Heat Flux Relations as Influenced by Soil Water Variations. Bound-Layer Meteorology 9: 113-122.
Kiehl, J.T. and Trenberth, K.E., 1997. Earth''s Annual Global Mean Energy Budget. Bulletin of the American Meteorological Society 78: 197-208.
Klemm, O., Chang, S.-C. and Hsia, Y.-J., 2006. Energy Fluxes at a Subtropical Mountain Cloud Forest. Forest Ecology and Management 224: 5-10.
Kustas, W.P., Stannard, D.I. and Allwine, K.J., 1996. Variability in Surface Energy Flux Partitioning During Washita’92: Resulting Effects on Penman-Monteith and Priestley-Taylor Parameters. Agricultural and Forest Meteorology 82: 171–193.
Liang Y.L., Lin, T.C., Hwong, J.L., Lin, N.H. and Wang, C.P., 2009. Fog and Precipitation Chemistry at a Mid-Land Forest in Central Taiwan. Journal of Environmental Quality 38: 627-636.
McCaughey, J.H., 1982. Spatial Variability of Net Radiation and Soil Heat Flux Density on Two Logged Sited at Montmorency, Quebec. Journal of Applied Meteorology 21: 777-787.
Mizoguchi, Y., Miyata, A., Ohtani, Y., Hirata, R. and Yuta, S., 2009. A Review of Tower Flux Observation Sites in Asia. Journal of Forest Research 14: 1-9.
Mizutani, K., Yamanoi, K., Ikeda, T. and Watanabe, T., 1997. Applicability of the Eddy Correlation Method to Measure Sensible Heat Transfer to Forest under Rainfall Conditions. Agricultural and Forest Meteorology 86: 193-203.
Oladosu, O.R., Jegede, O.O., Sunmonu, L.A. and Adediji, A.T., 2007. Bowen Ratio Estimation of Surface Energy Fluxes in a Humid Tropical Agricultural Site, Ile-Ife, Nigeria. Indian Journal of Radio and Space Physics 36(3): 213-218.
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V. N., Underwood, E.C., D’Amico, J.A., Itoua, I., Strand, H., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P. and Kassem, K.R., 2001. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 51(11): 933-938.
Perez. P.J., Castellvi, F., Ibañez, M. and Rosell, J.I., 1999. Assessment of Reliability of Bowen Ratio Method for Partitioning Fluxes. Agricultural and Forest Meteorology 97(3): 141-150.
Rauner, Yu.L., 1972. "Teplovoy balans rastitel''nogo pokrova" (Heat Balance of the Vegetation Cover). Gidrometeoizdat, Leningrad.
Raynor, G.S., 1971. Wind and Temperature Structure in a Coniferous Forest and a Contiguous Field. Forest Science 17(3): 351-363.
Scholl, M., Eugster, W. and Burkard, R., 2011. Understanding the Role of Fog in Forest Hydrology: Stable Isotopes as Tools for Determining Input and Partitioning of Cloud Water in Montane Forests. Hydrological Processes 25: 353-366.
Stull, R.B., 1988. An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers.
Tajchman, S.J., 1981. Comments on Measuring Turbulent Exchange Within and Above Forest Canopy. Bulletin of the American Meteorological Society 62(11): 1550-1559.
Tang, M., Sheng, Z. and Chen, Y., 1979. The Average Climatic Characteristics of Tibetan Plateau Monsoon. Acta Geographica Sinica 34(1): 33-41. (in Chinese).
Tanner, B.D., Greene, J.P. and Bingham, G.E., 1987. A Bowen-ratio Design for Long Term Measurements. American Society of Agricultural Engineers, Paper No. 87-2503.
University of California Museum of Paleontology(UCMP). [http://www.ucmp.berkeley.edu/exhibits/biomes/index.php]
Verma, S.B., Rosenberg, N.J., Blad, B.L., 1978. Turbulent Exchange Coefficients for Sensible Heat and Water Vapor under Advective Conditions. Journal of Applied Meteorology 17: 330-338.
Wilson, K.B. and Baldocchi, D.D., 2000. Seasonal and Interannual Variability of Energy Fluxes over a Broadleaved Temperate Deciduous Forest in North America. Agricultural and Forest Meteorology 100: 1–18.
Yao, J., Zhao, L., Ding, Y., Gu L., Jiao, K., Qiao, Y. and Wang, Y., 2008. The Surface Energy Budget and Evapotranspiration in the Tanggula Region on the Tibetan Plateau. Cold Regions Science and Technology 52: 326-340.
Zhao, L., Cheng, G., Li, S., Zhao, X. and Wang, Sh., 2000. The Freezing and Melting Process of the Permafrost Active Layer Near Wu Dao Liang region on Tibetan Plateau. Chinese Science Bulletin 45(11): 1205-1211. (in Chinese).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top