跳到主要內容

臺灣博碩士論文加值系統

(3.229.137.68) 您好!臺灣時間:2021/07/25 17:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳虹巧
研究生(外文):Hung-Chiao Chen
論文名稱:不同計算模式應用在蓮華池土壤水力傳導度之比較
論文名稱(外文):Comparison of different calculation model''s application to hydraulic conductivity in Lienhuachih area
指導教授:陳明杰陳明杰引用關係
指導教授(外文):Ming-Chieh Chen
口試委員:盧惠生梁偉立
口試日期:2015-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:102
中文關鍵詞:土壤孔隙結構張力滲透計雙環入滲計蓮華池研究中心飽和與不飽和水力傳導度關係式
外文關鍵詞:Double-ring infiltrometerLienhuachih Research CenterSaturated-unsaturated hydraulic conductivity modelsSoil porosity structureTension infiltrometer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究引用前人建立之GE模式(Gardner, 1958)、BC模式(Brooks and Corey , 1966)、GP模式(Gardner, 1965)與VGM模式(van Genuchten, 1980)四種飽和與不飽和水力傳導度關係式,應用於蓮華池地區的森林土壤對於水力傳導度隨壓力水頭變化的模擬效果。為了方便結合蓮華池地區的相關研究結果進行討論,本研究選定蓮華池四號及五號集水區作為研究對象,沿著兩集水區的山脊各選定四個試驗點,每個試驗點分為表層與20 cm兩種土壤深度,使用張力滲透計進行現地滲透試驗。比較解聯立法、迴歸分析法與數值模擬法三種不同數學方法於求解模式參數的適用性,並計算誤差評估指標RMSE供決定最佳參數解。將獲得最佳參數解的各模式模擬不同壓力水頭條件下的水力傳導度值與實測值作比較,可探討各模式是否適用於描述水力傳導度隨壓力水頭的變化趨勢。現地土壤在張力滲透計實驗後待乾燥一段時間,採取不擾動土壤試體供分析其物理性質,對照現地滲透試驗結果,以說明土壤物理性質對於水分滲透流動的影響。其次,於模式決定過程中,導入蔡彥邦(2013)使用雙環入滲計所測得之飽和水力傳導度,藉此修正模式於近飽和狀態的水力傳導度推估值。
研究結果顯示,相較於五號土壤,四號不同樣點之間的土壤物理性質呈現較高的均質性,且五號不同深度之土壤有較大差異,四號不同深度的土壤差異較小。此結果影響了現地水力傳導度之量測,張力滲透計的實驗結果顯示,四號不同深度之土壤在各壓力水頭下的水力傳導度值的分散程度皆小於五號。在飽和與不飽和水力傳導度關係模式的決定上,四號各樣點有較相近的土壤質地結構參數與飽和水力傳導度估計值,五號的變異程度則較大。此外,在重力作用大於毛細作用的較大壓力水頭條件下,由於水分快速通過部分中、大孔隙而無法有效填滿土壤孔隙,可能因而低估水力傳導度,但若試驗前日降雨量越多,表層土壤孔隙越容易被水分填滿而連續導水,水力傳導度測值較高。三種數學方法中以數值模擬法能使模式的推估值最接近實測值。而四種模式中則以GP模式與VGM模式的模擬效果較佳,誤差評估指標RMSE都可低於10-6。利用GP模式與VGM模式所得到之土壤質地結構參數介於12 m-1~36 m-1,蓮華池地區森林的土壤有良好的透水性。

The study applied four saturated-unsaturated hydraulic conductivity models, which were Gardner exponential model (GE), Boorks and Corey model (BC), Gardner rational power model (GP) and van Genuchten-Mualem model (VGM), to the simulation of hydraulic conductivities under varied water pressure head condition. Three mathematical methods including solving the simultaneous equations, regression analysis, and numerical simulation were adopted to decide the parameters in the four models. Study area was at Lienhuachih watershed No. 4 and No. 5. Four locations were selected along ridge, respectively from the two watersheds, and each location comprised soil surface and the depth of 20 cm for field infiltration test by tension infiltrometer. As the soil became desiccated after the infiltration test, undisturbed soil samples of the infiltration test location were excavated for analyzing their physical properties, that to understand how the soil physical properties affect the measured hydraulic conductivity. Besides, the saturated hydraulic conductivities at the locations which had been measured by the double-ring infiltrometer by Yeng-Bang Tsai (2013) were used in the study to modify the hydraulic conductivities that simulated by the models under near-saturated condition.
According to the analyzed data, soil physical properties of watershed No. 4 were more homogeneous than that of watershed No. 5, and the discrepancy of different depths were also smaller than that of watershed No. 5. The data of field infiltration test showed that the dispersion of hydraulic conductivities of the soil surface and the depth of 20 cm of watershed No. 4 were both smaller than that of watershed No. 5. Therefore, at the results of establishing saturated-unsaturated hydraulic conductivity models, the parameters including soil text/structure parameter and the saturated hydraulic conductivity were more similar between the locations of watershed No. 4 than that of watershed No. 5. In field infiltration test, the condition of higher water pressure head that usually has more gravitational force but less of capillary force would make water only flow through parts of large soil pores instead of filling up whole pores that probably lead to underestimate the hydraulic conductivity. In the condition of more rainfall to the soil surface before the field infiltration test, it revealed that the soil pore could be effectively filled and therefore enhance the hydraulic conductivity.
The mathematical method of numerical simulation could get the lowest index of error, RMSE, which meant the method was the best way to estimate the parameters in four models. Besides, the RMSE results of GP model and VGM model were both lower 10-6, better than the results of GE model and BC model. According to GP model and VGM model, calculated values of the soil text/structure parameter were between 12 m-1 to 36 m-1, which meant that the soil of research site at Lienhuachih was well-structured, coming up to the analyzed results of the soil physical properties.


中文摘要…………………………………………………………………………………i
英文摘要…………………………………………………………………………….......ii
目錄……………………………………………………………………………………..iv
圖目錄.………………………………………………………………………………….vi
表目錄………………………………………………………………………………….vii
第一章 前言…………………………………………………………………………...1
第二章 前人研究……………………………………………………………………...4
第一節 土壤水的能量狀態…………………………………………………...4
第二節 土壤孔隙分類及水分移動…………………………………………...5
第三節 土壤水力傳導度………..…………………………………………….9
達西定律…………………………………………………………..9
飽和與不飽和水力傳導度………………………………………10
飽和與不飽和水力傳導度之關係式……………………………14
影響水力傳導度的因子…………………………………………15
第三章 材料與方法………………………………………………………………….17
第一節 研究區域概況……………………………………………………….18
第二節 研究方法…………………………………………………………….21
土壤物理性質分析………………………………………………21
現地水力傳導度測定……………………………………………23
不飽和水力傳導度測量:張力滲透計………………………….23
飽和水力傳導度測量:雙環入滲計……………………………24
推估近飽和狀態的水力傳導度值……………………………….25
以不同模式模擬不同水分勢能狀態的水力傳導度……………27
各種飽和與不飽和水力傳導度的關係式……………………….27
各模式的參數求解法…………………………………………….28
模擬效果的評估指標…………………………………………….30
本研究的試驗設計……………………………………………….30
第四章 結果與討論………………………………………………………………….31
第一節 試驗樣區的土壤物理性質分析…………………………………...31
不同集水區與不同土壤深度的土壤物理性質之差異…………31
試驗樣區的土壤粒徑組成特性…………………………………33
試驗樣區的土壤孔隙率特性………………………..…………36
第二節 現地水力傳導度測定結果分析…………………………………….38
不同集水區與不同土壤深度的現地水力傳導度值……………37
現地水力傳導度測值的相關分析………………………………40
第三節 飽和與不飽和水力傳導度關係式的模式建立……………............47
GE模式…………………………………………………………48
BC模式…………………………………………………………56
GP模式…………………………………………………………61
VGM模式………………………………………………………64
第四節 不同模式模擬水力傳導度變化與現地實測值之比較……………68
第五節 土壤質地結構參數與飽和水力傳導度……………….……………71
第五章 結論…….……………………………………………………………………75
參考文獻…………………………………………………………………….…………77
附錄……………………………………………………………………………………82
附錄一、四號及五號集水區各樣點的水力傳導度實測值…………………...……82
附錄二、四號集水區各樣點不同深度的土壤物理性質………………...…………83
附錄三、五號集水區各樣點不同深度的土壤物理性質……………………...……84
附錄四、以解聯立法求各樣點在不同壓力水頭區間計算所得GE模式之α_GE值…85
附錄五、以解聯立法求各樣點在不同壓力水頭區間計算所得GE模式之Ks值…86
附錄六、土壤表層以數值模擬法決定的四種模式的模擬結果與現地實測值之比較(未加入雙環所決定的模式)……………………………….………………87
附錄七、土壤深度20 cm以數值模擬法決定的四種模式的模擬結果與現地實測值之比較(未加入雙環所決定的模式)………………………………………...91
附錄八、土壤表層以數值模擬法決定的四種模式的模擬結果與現地實測值之比較(加入雙環所決定的模式)………………….………………………………95
附錄九、土壤深度20 cm以數值模擬法決定的四種模式的模擬結果與現地實測值之比較(加入雙環所決定的模式)…………………………………………99

圖目錄
圖1 研究流程圖……………………………………………………………………….17
圖2 林業試驗所蓮華池研究中心地理位置及試驗集水區圖……………………….19
圖3蓮華池四號及五號集水區內各試驗樣點的位置示意圖……………………….20
圖4張力滲透計……………………………………………………………………….23
圖5雙環入滲計……………………………………………………………………….24
圖6 四號及五號集水區不同樣點及深度的土壤粒徑組成百分比………………….34
圖7 四號集水區A樣點的土壤表層以數值模擬法所決定的GE模式曲線圖…….55
圖8 四號集水區A樣點的土壤表層以數值模擬法所決定的BC模式曲線圖….…60
圖9 四號集水區A樣點的土壤表層以數值模擬法所決定的GP模式曲線圖…….62
圖10 四號集水區A樣點的土壤表層以數值模擬法所決定的VGM模式曲線圖.....67
圖11以四號集水區A樣點的土壤表層為例,利用數值模擬法所決定的四種模式的模擬結果與實測值之比較…………………………………….………………...70


表目錄
表1 不同學者所定義的大孔隙………………………………………………………...6
表2 Luxmoore (1981) 所提出的土壤孔隙分類……………………..………………7
表3 土壤水勢能、孔隙大小與水的狀態關係………………………………………...7
表4 在不同的土壤質地結構分類中,土壤質地結構參數α值的現地估計值……..11
表5 蓮華池四號及五號集水區地形因素…………………………………………….19
表6蓮華池四號及五號集水區各試驗樣點之間的距離…………………………….20
表7雙環入滲計飽和水力傳導度之測定結果(蔡彥邦,2013)……………………..25
表8 兩集水區及不同深度之土壤物理性質變異數分析結果……………………….32
表9 兩集水區及不同深度之土壤粒徑分析變異數分析結果……………………….32
表10 兩集水區及不同深度之土壤碳、氮含量變異數分析結果…………………….32
表11 兩集水區及不同深度之各大小土壤孔隙率的變異數分析結果……………...33
表12 兩集水區各樣點表層及深度20 cm土壤的碳、氮含量比例…………………34
表13 四號集水區不同土壤深度之變異數分析結果...................................................36
表14 五號集水區不同土壤深度之變異數分析結果...................................................36
表15 總孔隙率與各種大小孔隙率之相關矩陣分析...………………………………37
表16 兩集水區在不同壓力水頭條件下之水力傳導度統計結果…………………...39
表17 不同壓力水頭條件下之水力傳導度測值與各土壤物理性質的相關係數…...41
表18 不同壓力水頭條件下之水力傳導度測值之間的相關矩陣分析……………...43
表19 各試驗樣點不同壓力水頭條件的水力傳導度在測定前之累積日雨量……...44
表20 不同壓力水頭的水力傳導度與前日累積降雨量的相關分析………………...45
表21 表層與深度20 cm土壤不同壓力水頭的水力傳導度彼此之間的相關分析…46
表22以四號與五號集水區A樣點為例,不同壓力水頭區間條件下解聯立所得GE模式之α_GE與Ks……………...…………………………………………………………………...49
表23 各樣點以解聯立法決定之GE模式及其RMSE值......................................…...50
表24 以張力滲透計測值利用迴歸分析法與數值模擬法決定之GE模式………...52
表25 加入雙環入滲計測值利用迴歸分析法與數值模擬法決定之GE模式……...54
表26 以張力滲透計測值利用迴歸分析法與數值模擬法決定之BC模式………..57
表27 加入雙環入滲計測值利用迴歸分析法與數值模擬法決定之BC模式……...58
表28 以張力滲透計測值利用數值模擬法決定之GP模式…...……………………62
表29 加入雙環入滲計測值利用數值模擬法決定之GP模式…...…………………62
表30 以張力滲透計測值利用數值模擬法決定之VGM模式…...…………………64
表31 加入雙環入滲計測值利用數值模擬法決定之VGM模式…...………………65
表32 GP模式與VGM模式的土壤質地結構參數與飽和水力傳導度推估值…….72
表33 四號與五號的土壤質地結構參數與飽和水力傳導度平均值……………….74


1.同延安、王全九 (1998) 土壤-植物-大氣連續體系中水運移理論及方法。陝西科技出版社,西安。
2.洪志遠 (2007) 蓮華池集水區不飽和土壤的水力特性。國立台灣大學森林環境暨資源學系碩士論文。
3.洪志遠、陳明杰 (2009) 應用張力滲透計於林地土壤孔隙水通量之探討。中華林學季刊42(4):541-555。
4.倪余文、區自清、應佩峰 (2001) 土壤優先水流及溶質優先遷移的研究。應用生態學報 12(1):103-107。
5.陸象豫、唐凱軍、古秀宇、黃惠雪 (2000) 林業試驗所各林區氣候狀況。台灣林業科學15(3):429-440。
6.陳信雄 (1998) 集水區經營學特論。國立台灣大學森林學系防砂工程研究室。
7.陳明杰、洪志遠 (2007) 蓮華池四號集水區土壤物理性質與水力傳導度的特性。台大實驗林研究報告21(4):293-306。
8.陳明杰、黃襦慧 (2006) 張力滲透計應用於蓮華池五號集水區土壤水力傳導度測定分析。中華林學季刊39(2):207-220。
9.黃正良、廖學誠、陳明杰、金恆鑣、陸象豫 (2002) 蓮華池試驗林森林水文研究之回顧分析。台大實驗林研究報告16(2):95-14。
10.黃孺慧 (2004) 蓮華池林地未飽和土壤水力傳導度特性之研究。國立台灣大學生物資源暨農學院森林環境暨資源學系碩士論文。
11.萬鑫森譯 (1987) 基礎土壤物理學。茂昌圖書有限公司
12.葛錦昭、楊炳炎、林淵霖、楊楚淇、漆陞忠 (1978) 台灣森林集水區經營試驗初步報告。林業試驗所試驗報告第304號:50頁。
13.蔡彥邦 (2013) 蓮華池林的土壤水力傳導度不同測定方法之比較。國立台灣大學生物資源暨農學院森林環境暨資源學系碩士論文。
14.蔣先覺、張家銘、洪富文、王明光 (1993) 蓮華池地區林地紅棕土壤中之氧化鐵。中國農業化學會誌31:793-802。
15.竹下敬司 (1985) 森林土壤水源养机能。森林立地5(2):19-26。
16.Ohte, N., Suzuki, M., and Kubota J. (1989) Hydraulic properties of forest soils (I) The vertical distribution of saturated-unsaturated hydraulic conductivity. Journal of the Japanese Forestry Society 71(4): 137-147.
17.Anderson, M. G., and Burt, B. T. (1990) Process studies in hillslope hydrology. John Wiley and Sons. New York. pp 43-126.
18.Ankeny, M. D., Kaspar, T. C., and Horton, R. (1990) Characterization of tillage and traffic effects on unconfined infiltration measurements. Soil Sci. Soc. Am. J. 54: 837-840.
19.Ankeny, M. D., Ahmed, M., Kaspar, T. C., and Horton, R. (1991) Simple field method for determining unsaturated hydraulic conductivity. Soil Sci. Soc. Am. J. 55(2): 467-470.
20.Bachmair, S., and Weiler, M. (2011) New dimensions of hillslope hydrology. Forest hydrology and biogeochemistry. Springer Netherland. pp 455-481.
21.Beven, K. (1981) Micro-, meso-, macroporosity and channeling flow phenomena in soil. Soil Sci. Soc. Am. J. 45: 1245.
22.Beven, K. and Germann, P. (1982) Macropores and water flow in soils. Water Resour. Res. 18: 1311-1325.
23.Bodhinayake, W., and Si, B. C. (2004) Near-saturated surface soil hydraulic properties under different land uses in the St Denis National Wildlife Area, Saskatchewan, Canada. Hydrological Processes 18(15): 2835-2850.
24.Bodhinayake, W., Si, B. C., and Noborio, K. (2004a) Determination of hydraulic properties in sloping landscapes from tension and double-ring infiltrometers. Vadose Zone J. 3: 964-970.
25.Bodhinayake, W., Si, B. C., and Xiao, C. (2004b) New method for determining water-conducting macro- and mesoporosity from tension infiltrometer. Soil Sci. Soc. Am. J. 68: 760-769.
26.Brewer, R. (1964) Fabic and mineral analysis of soils. John Wiley, New York.
27.Brooks, R. H., and Corey, A. T. (1964) Hydraulic properties of porous media. Hydrology Paper no. 3, Civil Engineering Dep., Colorado State Univ., Fort Collins, Colo.
28.Brooks, R. H., and Corey, A. T. (1966) Properties of porous media affecting fluid flow. J. Irrig. Drain. Div., Am. Soc. Civil Eng. 92(IR2): 61-88.
29.Bullock, P. and Tomasson, A. J. (1979) Rothamsted studies of soil structure, 2, Measurement and characterisation of macroporosity by imagine analysis and comparison with data from water retention measurements. J. Soil Sci. 30(3): 391-414.
30.Burdine, N. T. (1953) Relative permeability calculations from pore-size distribution data. Petr. Trans. Am. Inst. Mining Matall. Eng. 198: 71-77.
31.Buttle, J. M. and McDonald, D. J. (2000) Soil macroporosity and infiltration characteristics of a forest podzol. Hydrological Processes 14(5): 831-848.
32.Clothier, B. E., and Smettem, K. R. J. (1990) Combining laboratory and field measurement to define the hydraulic properties of soil. Soil Sci. Soc. Am. J. 54: 299-304.
33.Dunn, G. H., and Phillips, R. E. (1991) Macroporosity of a well-drained soil under no-till and conventional tillage. Soil Sci. Soc. Am. J. 55: 817-823.
34.Elrick, D. E., Reynolds, W. D., and Tan, K. A. (1989) Hydraulic conductivity measurements in the unsaturated zone using improved well analyses. Ground Water Monit. Rev. 9: 184-193.
35.Gardner, W. R. (1958) Some steady-state solutions of unsaturated moisture flow equations with application to evaporation from a water table. Soil Sci. 85: 228-232.
36.Gardner, W. R. (1965) Dynamic aspects of soil-water availability to plants. Annu. Rev. Plant Physiol. 16: 323-342.
37.Hillel, D. (1998) Environmental soil physics: fundamentals, applications, and environmental considerations. Academic press. pp 203-243.
38.Jarvis, N. (2001) The MACRO model (Version 4.3). Technical description. Dept. Soil Sci., Swedish Univ. Agric. Sci., Uppsala.
39.Jarvis, N. J. (2007) A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. European Journal of Soil Science, 25(3): 523-546.
40.Jeppson, R. W. (1974) Axisymmetric infiltration in soils. I. Numerical techniques for solution. J. Hydrol. 23: 111-130.
41.Klute, A., and Dirksen, C. (1986) Hydraulic conductivity and diffusivity: Laboratory methods. In: A. Klute (ed.) Methods of soil analysis. Part 1. 2nd. ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. pp 687-734.
42.Logsdon, S. D., and Jaynes, D. B. (1993) Methodology for determining hydraulic conductivity with tension infiltrometers. Soil Sci. Soc. Am. J. 57: 1426-1431.
43.Luxmoore, R. J. (1981) Micro-, meso-, macroporosity of soil. Soil Sci. Soc. Am. J. 45: 671-672.
44.Marshall, T. J. (1959) Relations between water and soil. Tech. Comm. 50. Commonwealth Bur. Soils, Harpenden, U. K.
45.McDonald, P. M. (1967) Disposition of soil moisture held in temporary storage in large pores. Soil Sci. 103(2): 139-143.
46.Mohanty, B. P. Horton, R., and Ankey, M. D. (1996) Infiltration and macroporosity under a row crop agricultural field in a glacial till soil. Soil Sci. 161: 205-213.
47.Mosley, M. P. (1979) Streamflow generation in a forested watershed. New Zealand. Water Resour. Res. 15(4): 795-806.
48.Mualem, Y. (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12: 513-522.
49.Nelson, W. R. and Baver, L. D. (1940) Movement of water through soils in relation to the nature of the pores. Soil Sci. Soc. Am. Proc. 5: 69-76.
50.Philip, J. R. (1985) Approximate analysis of the borehole permeameter in unsaturated soil. Water Resour. Res. 21: 1025-1033.
51.Ranken, D. W. (1974) Hydrologic properties of soil and subsoil on a steep forested slope. Maeter thesis, Oreg. State Univ. Corvallis.
52.Reeves, M. J. (1980) Recharge of the English Chalk: A possible mechanism. Eng. Geol. 14(4): 231-240.
53.Reynolds, W. D. (1993) Saturated hydraulic conductivity: Laboratory methods. In: M.R. Chater (ed.) Soil sampling and methods of analysis. Can. Soc. Soil Sci. Lewis Publ., Boca Raton, FL. pp 589-598.
54.Reynolds, W. D., and Elrick, D. E. (1990) Ponded infiltration from a single ring: Ⅰ. Analysis of steady flow. Soil Sci. Soc. Am. J. 54: 1233-1241.
55.Reynolds, W. D., and Elrick, D. E. (1991) Determination of hydraulic conductivity using a tension infiltrometer.. Soil Sci. Soc. Am. J. 55(3): 633-639.
56.Reynolds, W. D., Bowman, B. T., Brunke, P. R., Drury, C. F., and Tan, C. S. (2000) Comparison of tension infiltrometer, pressure infiltrometer, and soil core estimates of saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 64: 478-484.
57.Reynolds, W. D., Elrick, D. E., and Youngs, E. G. (2002) Ring or cylinder infiltrometers (Vadose Zone). In: Dane J. H., Topp G. C. (eds) Method of soil analysis. Part 4. Physical methods. Soil Society of America, Madison, WI, USA, pp 817-843.
58.Skopp, J. (1981) Comment on micro-, meso- and macroporosity of soil. Soil Sci. Soc. Am. J. 45: 1246.
59.Tension Infiltrometer Operating Instructions (2008) Soil Moisture Equipment Corp.
60.van Genuchten, M. Th. (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soil. Soil Sci. Soc. Am. J. 44: 892-898.
61.Watson, K. W., and Luxmoore, R. J. (1986) Estimating macroporosity in a forest watershed by use of a tension infiltrometers. Soil Sci. Soc. Am. J. 50: 578-582.
62.Webster, J. (1974) The hydrologic properties of the forest floor under beech/podocarp/hardwood forest. Master’s thesis, North Westland, New Zealand. Univ. Canterbury. 77.
63.Weiler, M., and McDonnell, J. (2004) Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology. J. Hydrol. 285(1): 3-18.
64.Wilson, G. V., and Luxmoore, R. J. (1988) Infiltration, macroporosity and mesoporosity distributions on two forested watersheds. Soil Sci. Soc. Am. J. 52: 329-335.
65.Wooding, R. A. (1968) Steady infiltration from a shallow circular pond. Water Resour. Res. 4: 1259-1273.
66.Youngs, E. G., Leeds-Harrison, P. B., and Elrick, D. E. (1995) The hydraulic conductivity of low permeability wet soils used as landfill lining and capping material: analysis of pressure infiltrometer measurements. J. Soil Tech. 8: 153-160.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top