跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 20:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊韻平
研究生(外文):Yun-Ping Yang
論文名稱:溪頭柳杉碳吸存之評估
論文名稱(外文):The Evaluation of Carbon Sequestration of Cryptomeria japonica in Xitou
指導教授:王亞男王亞男引用關係
口試委員:廖天賜李明仁蕭英倫柯淳涵
口試日期:2015-07-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:113
中文關鍵詞:柳杉光合作用光度光反應曲線碳吸存葉片形態
外文關鍵詞:Cryptomeria japonicaPhotosynthesisLight intensityLight response curveCarbon sequestrationLeaf morphology
相關次數:
  • 被引用被引用:1
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
全球暖化持續惡化,減少大氣二氧化碳含量為本世紀最主要之環境議題之一。陸域生態系中,森林經光合作用吸收及固定二氧化碳,有效減緩溫室效應。柳杉為台灣人工林主要樹種,因此,本研究應用光合作用速率評估溪頭地區柳杉的碳吸存效果,並探討光合作用與各項影響因子之關係。於台灣南投縣臺大實驗林溪頭營林區內,自2014年3月至2015年4月量測柳杉之光合作用速率與環境及生理因子,探討林木光合作用速率在不同方位及葉片形態下之差異、光合速率日變化與季節變化的主要影響因子、溪頭地區柳杉碳吸存潛力及葉表面積轉換公式之建立,以提供相關領域研究及森林經營參考。
由試驗樣木中發現:個體內葉片形態具有長短葉之差異,經葉綠素與可溶性蛋白含量之檢測發現長短葉平均含量相當,而個體間長短葉亦經光反應曲線測量,發現各光度下光合作用速率無顯著差異,初步研究顯示:長葉與短葉在個體內及個體間光合能力沒有顯著差異。在方位方面:分布於溪頭營林區空中走廊之柳杉,在東向與西向之光合速率日變化具有顯著差異,主要因東西向環境之光度及東西向柳杉蒸散速率之差異所致。柳杉平均一日之光合作用速率在濕季及乾季為分別為0.58及0.39 μmol m-2 s-1,顯示光合作用速率隨季節變化而變動。在濕季中光合作用日變化與季節變化最主要的影響因子為光度,蒸散速率次之,乾季亦以光度為最重要而相對溼度次之,雖兩季的影響因子相同但個別影響光合作用速率之程度不同;依據乾、濕季之光反應曲線顯示,乾、濕季之光反應曲線幾近重疊,顯示柳杉之光合作用潛力在季節轉換中無明顯變化。最後,進行各樣木之碳吸存評估,以累加方法與模式計算之每年碳吸存量分別為863.32及465.88 kg/ha,平均單株柳杉年碳吸存量為2.62及1.22 kg。利用線性校正模式,建立柳杉葉表面積(x)與雙面投影面積(y)之迴歸式,結果顯示:解釋率為72%,相關性為85%,在自由度為98中,95%信賴區間範圍為 [ 1.98 , 1.98 ]。

With the deterioration of global warming, decreasing the concentration of carbon dioxite becomes one of the main tasks on environment protection. In terrestrial ecosystems, forests absorb and fix CO2 via photosynthesis and reduce the global warming. Cryptomeria japonica is one of the primary plantation tree species in Taiwan. Therefore, the main purpose of this study was to measure the one-year carbon sequestration of the photosynthetic rate (An) in Cryptomeria japonica at Air Corridor in Xitou and studied the relationship of An and factors which influenced An . This study was conducted from March of 2014 to April of 2015, measuring An, together with the environmental and physioligical factors, in order to examine the effects of the An from two orientations and leaf morphology, clarify the main factor which effect An within diurnal and seasonal variations, determine the effect of one-year carbon sequestration in Xitou, and finally establish the transforming model from leaf projected area to leaf surface area.
The leaf morphological difference was the length of leaf --- long leaf and short leaf between different leaves of C. japonica. After examining the content of chlorophyll and soluble protein, the experimental result showed that there were no difference between individual leaves. On the other hand, the light response curves are similar between long leaf and short leaf individuals. Therefore, the primary speculation was that the two types of leaves had similar photosynthetic capability. The An from east-orientation was different from that of the west, and that was the result of the difference in the radiation and leaf evapotranspiration rates between the two directions. Accounting for the An in wet (May to Semptember) and dry seasons, An was 0.58 and 0.39 μmol m-2 s-1 respectively. It showed that An could vary with seasons. Among all the environmental and physiological factors, radiation was most important factor which affected An within diurnal and seasonal variations, followed by the evapotranspiration rates in wet season and relative humidity in dry season. According to the light response curve, there was an overlap between dry and wet season, which showed the similar photosynthetic capability. Therefore, the characteristics of photosynthesis of C. japonica was no tramsmiting phenomenon within seasons.
The amount of carbon sequestration per year was 863.32 kg/ha in accumulation method and 465.88 kg/ha in model method, and the average amount of carbon sequestration per tree was 2.62 and1.22 kg, respectively. Finally, when useing the linear calibration model to establish the transforming model for leaf projected area (y) to leaf surface area (x), the R2 is 72% and the correlation is 85%. Also, the 95% confidence interval for is [1.98 , 1.98 ] studied by the student’s t distribution with 98 degree of freedom.


誌謝........................................................................................................................... i
摘要.......................................................................................................................... ii
Abstract .................................................................................................................... iii
目錄.......................................................................................................................... v
表目錄 .................................................................................................................... vii
圖目錄 ..................................................................................................................... ix
英文名詞縮寫........................................................................................................... x
一、 前言 .............................................................................................................. 1
二、 前人文獻....................................................................................................... 5
(一) 光合作用................................................................................................... 5
(二) 環境因子對光合作用之影響 .................................................................... 7
1. 光度對葉片光合作用的影響.................................................................... 8
2. 溫度對葉片光合作用的影響.................................................................. 10
(三) 植物生理因子之影響.............................................................................. 11
(四) 光合作用之碳固定貢獻與推算 .............................................................. 13
三、 材料與方法................................................................................................. 21
(一) 試驗地概況及試驗樹種.......................................................................... 21
(二) 試驗項目與方法 ..................................................................................... 29
1. 環境氣象與樣木基本資料...................................................................... 29
2. 可溶性蛋白與葉綠素含量測定.............................................................. 30
3. 光反應曲線測定..................................................................................... 32
4. 光合作用日變化之測定.......................................................................... 33
5. 樣木葉面積之估算.................................................................................. 34
6. 全株全年碳吸存量推估.......................................................................... 35
7. 統計與分析............................................................................................. 37
(三) 試驗設計................................................................................................. 38
四、 結果與討論................................................................................................. 39
(一) 柳杉葉片在不同方位及形態上之光合能力 ........................................... 39
1. 柳杉個體內葉片之色素與可溶性蛋白含量分析................................... 39
2. 柳杉個體間葉片之光反應曲線.............................................................. 43
(二) 光合作用與方位之關係.......................................................................... 48
1. 日變化曲線............................................................................................. 48
2. 樹木東西向光合作用與環境及生理因子............................................... 53
(三) 光合作用速率與環境及生理因子之關係............................................... 60
(四) 乾濕季光反應曲線.................................................................................. 72
(五) 光合作用碳吸存估算.............................................................................. 76
1. 光合作用單位轉換.................................................................................. 76
2. 光合作用日變化與樹冠葉面積之碳吸存推估....................................... 79
3. 光反應曲線與光度之碳吸存公式推估................................................... 85
4. 葉面積轉換公式..................................................................................... 93
五、 結論 ............................................................................................................ 95
參考文獻 ................................................................................................................97

王亞男 (2000) 柳杉、樟樹對溫室氣體效益之研究。89年度國科會/環保署科技合作研究計畫期末報告:41pp。
王亞男、楊智凱、李文馨、鄭森松(2009) 二種不同栽植密度對柳杉初期生長之影響。臺大實驗林研究報告23(4):285-293。
王亞男、周宏祈、王介鼎、陳秋萍(2010) 溪頭三叉崙柳杉生長量及碳貯存量效益之研究。臺大實驗林研究報告24(2):157-167。
安鋒、蔡靖、姜在民、張遠迎、趙平娟、張碩新 (2006) 8種木本植物木質部栓塞變化與生理生態指標間關係的研究(II)。西北林學院學報21(1):37-42。
李訓煌 (1978) 不同齡級柳杉林之生長及樹木生物量生產之研究。國立臺灣大學森林學系碩士論文。
李意德、曾慶波、吳仲民、周光益、陳步峰(1997) 熱帶森林生態系統研究與管理。科學出版社,北京。
李國忠、林俊成、陳麗琴 (2000) 台灣杉人工林碳吸存潛力及其成本效益分析。台灣林業科學15(1): 115-123。
杜大治、王亞男、蕭英倫(2003) 孟宗竹不同冠層二氧化碳固定效益之研究。台大實驗林研究報告17(3):187-194。
余瑞珠、陳忠義、江博能、賴彥任、蔡明哲、王亞男(2012) 屏東平地造林地區二氧化碳通量初探。台大實驗林研究報告26(3): 163-174。
林務局 (1995) 第三次臺灣森林資源及土地利用調查。
林務局 (1997) 臺灣林產物處分調查用立木材積表。
林俊成、鄭美如、劉淑芬、李國忠(2002) 台灣杉人工林碳吸存潛力及其成本效益分析。臺灣林業科學15(1): 115-123。
林裕仁、劉瓊霦、林俊成(2002) 臺灣地區主要用材比重與碳含量測定。臺灣林
98
業科學17(3):291-299。
馬子斌、陳政靜、熊如珍、黃清吟、陳欣欣、翟思湧(1992) 重要商用木材之一般性質。臺灣省林業試驗所林業叢刊1號。
洪儷文、王亞男(2003) 樟樹不同冠層位置之光合作用淨生產力。中華林學季刊。36(1): 27-38。
徐鎮暉、廖天賜、翁仁憲(2005) 不同海拔臺灣二葉松光合作用、同化產物累積、形成層活動之季節變化及針葉生長期之差異。中華林學季刊38(3):291-303。
陳麗琴、黃進睦、林俊秀、邱祈榮(1997) 六龜試驗林台灣杉人工林蓄積量及生長估測之研究。台灣林業科學12(3): 319-327。
陳阿興 (2002) 臺灣柳杉人工林之現況。「綠色矽島系列研討會-柳杉人工林經營研討會」論文集,國立台灣大學森林系及中華林學會主辦,P9-15。
郭耀綸、陳瑄培(2005) 南仁山森林四種台灣特稀有樹種之光合作用光反應及溫度反應。台灣林業科學20(3):215-226。
陳志遠、郭耀綸(2008) 南仁山迎風與背風分布樹種之光合作用對溫度的差異反應。作物、環境與生物資訊5: 93-102。
陳忠義、王亞男、葉玲薇、謝忠諺、余瑞珠、吳宗賢(2012) 屏東萬隆農場櫸木之生長及CO2吸存量。臺大實驗林研究報告26(3): 191-199。
郭耀綸(2000)南仁山熱帶低地雨林白榕冠層及林下植物的光合作用。臺灣林業科學15(3):351-363。
游漢明 (1981) 不同齡級柳杉林分地上部生物量與淨生產物。國立臺灣大學森林學系碩士論文。
楊榮啟 (1975) 台灣大學實驗林產柳杉之生長與收穫的研究。臺大實驗林研究報告第116號。
楊棋明、吳雅婷、劉翠雅、黃文達、黃秀鳳、趙璧玉(2004) 高等植物非葉綠色組織葉綠素含量及其a/b 比值之初探。華岡農科學報13:27-34。
99
廖玉琬、徐善德(1999) 植物生理學。啟英文化事業有限公司。
廖天賜、張安邦、翁仁憲(2002) 遮陰對大葉楠與香楠苗木光合作用及生理之影響。林業研究季刊24(1):1-10。
劉知妤、王兆桓(2008) 以林齡─ 蓄積量模式估算柳杉及檜木人工林的碳吸存量。宜蘭大學生物資源學刊4(1):35-45。
劉素玲、王亞男、陳德仁、鄭景鵬(2009) 溪頭門田柳杉生長量及二氧化碳貯存量效益之研究。臺大實驗林研究報告23(3):189-200。
臺灣大學生物資源暨農學院實驗林管理處 (2008) 國立臺灣大學生物資源暨農學院實驗林經營計畫:民國九十七年七月至民國一○七年六月。行政院農業委員會林業特刊,南投縣竹山鎮,206頁。
鄭智馨、陳彥睿、邱祈榮、林俊成、吳俊賢 (2011) 檳榔園轉作造林地之生態系統碳儲存量變化:以921地震後的中寮為例。中華林學季刊44(2):217-232。
賴彥仁、洪志遠、魏聰輝、張振生、江博能、衛強、余瑞珠、莊振義、謝正義、蔡明哲、王亞男(2012) 溪頭地區二氧化碳通量之初探。台大實驗林研究報告26(3): 211-224。
魏聰輝、賴彥任、張振生、沈介文、洪志遠、王亞男、陳明杰(2011) 溪頭地區霧分佈特性初探。臺大實驗林研究報告25(2):149-160。
Anderson, J. M. (1986) Photoregulation of the composition, function, and structure of thylakoid membranes. Annual Review Plant Physiology 37: 93-136.
Aron, D. (1949) Copper enzyme in isolated chloroplasts polyphenoloxidased in Beta vulgaris. Plant Physiology 24: 1-15.
Baldocchi, D. D., Meyers, T. (1998) On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: a perspective. Agriculture and Forest Meteorology 90: 1-25.
Baldocchi, D. D., Wilson, K. B. (2001) Modeling CO2 and water vapor exchange of a
100
temperate boradleaved forest across hourly to decadal time scales. Ecological
Modeling 142: 155-184.
Baldocchi, D. D., Wilson, K. B. (2001) Modeling CO2 and water vapor exchange of a temperate boradleaved forest across hourly to decadal time scales. Ecological Modeling 142: 155-184.
Baldocchi, D. D., Wilson, K. B., Gu, L. (2002) How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forest and assessment with the biophysical model CANOAK. Tree Physiology 22: 1065-1077.
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P. et al. (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838.
Beiderwieden, E., Wolff, V., Hsia,Y. J., Klemm, O. (2008) It goes both ways: measurements of simultaneous evapotranspiration and fog droplet deposition at a montane cloud forest. Hydrology Process 22: 4181–4189.
Benecke, U., Havranek, W. M. (1980) Gas exchange of trees at altitudes up to timberline, Craigieburn Range, New Zealand. In: Benecke U., Davies M. D. (Eds.), Mountain environments and subalpine tree growth. Technical report 70: pp. 195–212. New Zealand Forest Service.
Bergmeyer, H. U. (1983) Methods for protein determination in methods of enzymatic analysis. 3th edtion vol II – Samples reagents assessment of results. pp. 84-94. Verlag Chemie Weinheim.
Berry, J., Björkman, O. (1980) Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology 31: 491–543.
Blankenship, R. E. (2002) Molecular regulation of photosynthesis. Blackwell Science, Oxford.
101
Biswas, S., Bala, S., Mazumdar, A. (2014) Diurnal and seasonal carbon sequestration potential of seven broadleaved species in a mixed deciduous forest in India. Atmospheric Environment 89: 827-834.
Björkman, O., Boardman, N. K., Anderson, J. M., Thorne, S. W., Goodchild, D. J., Pyliotis, N. A.( 1972) Effect of light intensity during growth of Atriplex patula on the capacity of photosynthetic reactions, chloroplast components and structure. – Carnegie Inst. Year Book 71: 115-135.
Boardman, N. K. (1977) Comparative photosynthesis of sun and shade plants. Annual Review Plant Physiology 28: 355-377.
Boussadia, O., Steppe, K., Zgallai, H., Ben El Hadj, S., Braham, M., Lemeur, R., Van Labeke, M. C. (2010) Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’. Scientia Horticulturae 123: 336–342.
Bradford, M. M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry 72: 248-254.
Brouwer, B., Ziolkowska, A., Bagard, M., Keech, O., Gardestrom, P. (2012) The impactof light intensity on shade-induced leaf senescence. Plant, Cell Environment 35:1084-1098.
Brown, S., Lugo, A. E., Chapman, J. (1986) Biomass of tropical tree plantations and its implications for the global carbon budget. Canadian. Journal of Forest Research 16: 390-394.
Buchanan, B. B., Gruissem, W., Jones, R. L. (2002) Biochemistry and molecular biology of plants. Wiley, Somerset.
Chang, F. H., Troughton, J. H. (1972) Chlorophyll a/b ratios in C3-C4-plants.
Photosynthetica 6: 57-65.
102
Chartier, P. (1966) Étude théorique de l’assimilation brute de la feuille. Annales de Physiologie Végétale 8: 167-195.
Chiba, Y. (1998) Simulation of CO2 budget and ecological implications of sugi (Cryptomeria japonica) man-made forest in Japan. Ecological Modelling 111: 269-281.
Collatz, G. J., Ball, J. T., Grivet, C., Berry, J. A. (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agriculture and Forest Meteorology 54: 107–136.
Dale, M. P., Causton, D. R. (1992) Use of the chlorophyll a/b ratios as a bioassay for the light environment of a plant. Functional Ecology 6:190-196.
De Wit, C. T., Brouwer, R., Penning de Vries, F. W.T. (1970) The simulation of photosynthetic systems. In: Setlik I, ed. Prediction and measurement of photosynthetic productivity. The Netherlands, Wageningen: Pudoc, 47-70.
DeJong, T. M., Doyle, J. F. (1985) Seasonal relationships between leaf nitrogen content (photosynthetic capacity) and leaf canopy light exposure in peach (Prunus persica). Plant, Cell Environment 8: 701-706. Desai, A. R. (2014). Influence and predictive capacity of climate anomalies on daily to decadal extremes in canopy photosynthesis. Photosynthesis research 119(1-2): 31-47. Diaz-Espejo, A., Nicolás, E., Fernández, J. E. (2007). Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought. Plant, Cell and Environment 30: 922-933.
Duursma, R.A., Mä kelä, A. (2007) Summary models for light interception and light-use efficiency of non-homogeneous canopies.Tree Physiology 27: 859–870.
Ellsworth, D. S., Reich, P. B. (1993) Canopy structure and vertical patterns of
103
photosynthesis and related leaf traits in a deciduous forest. Oecologia 96: 169-178.
Ehleringer, J. R., Field, C. B., (1993) Scaling Physiological Processesd Leaf to Globe.
Academic Press, London.
Enquist, B. J., Brown, J. H., West, G. B. (1998) Allometric scaling of plant energetics and population density. Nature 395: 163-165.
Escudero, A., Fernández, J., Cordero, A., Mediavilla, S. (2013) Distribution of leaf characteristics in relation to orientation within the canopy of woody species. Acta Oecologica 48: 13-20.
Evans, J. R. (1987) The Relationship between electron transport components and
photosynthetic capacity in Pea leaves grown at different irradiances. Australian Journal of Plant Physiology 14:157-70.
Evans, J. R. (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9-19.
Evans, J. R., Kaldenhoff, R., Genrt, B., Terashima, I. (2009) Resistances along the CO2 diffusion pathway inside leaves. Journal of Experimental Botany 60: 2235–2248.
Field, C., Mooney, H. A. (1986) The photosynthesis nitrogen relationships in wild
plants. In: Givinish, T. J. (Ed.), On the Economy of Form and Function. Cambridge University Press, Cambridge.
Farquhar, G. D., von Caemmerer, S., Berry, J.A. (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149: 78–90.
Giacomo, G., Federico, M. (2005) Stomatal, mesophyll conductance and biochemical
limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell and Environment 28: 834–849.
Gonçalves, J. F. D. C., Marenco, R. A., Vieira, G. (2001) Concentration of
104
photosynthetic pigments andchlorophyll fluorescence of Mahogany and Tonka bean under two light environments. Revista Brasileira de Fisiologia Vegetal, 13(2): 149-157.
Grassi, G., Vicinelli, E., Ponti, F., Cantoni, L., Magnani, F. (2005) Seasonal and interannual variability of photosynthetic capacity in relation to leaf nitrogen in a deciduous forest plantation in Northern Italy. Tree Physiology 25: 349-360.
Gulmon, S. L., Chu, C. C. (1981) The effects of light and nitrogen on photosynthesis, leaf characteristics, and dry matter allocation in the chaparral shrub, Diplacus aurantiacus. Oecologia 49: 207-212.
Gunderson, C. A., Norby, R. J., Wullshleger, S. D. (2000) Acclimation of photosynthesis and respiration to simulated climatic warming in northern and southern population of Acer saccharum: laboratory and field evidence. Tree Physiology, 20: 87–95.
Hák, R., Rinderle-Zimmer, U., Lichtenthaler, H. K., Nátr, L. (1993) Chlorophyll a fluorescence signatures of nitrogen deficient barley leaves. Photosynthetica 28: 151-159.
Harley, P., Guenther, A., Zimmerman, P. (1996) Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum(Liquidambar styraciflua) leaves. Tree Physiology 16: 25-32.
Hanba, Y. T., Kogami, H., Terashima, I. (2002) The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand. Plant, Cell and Environment 25: 1021–1030.
Hashimoto, R., Suzaki, T. (1979) Studies on the response of photosynthesis to light intensity in leaves attached at various positions in tree crowns of a Cryptomeria japonica even-aged stand-effects of shading and leaf aging. Journal of Japanese Forest Society 61: 193-201.
105
Hikosaka, K., Terashima, I., Katoh, S. (1994) Effects of leaf age, nitrogen nutrition and photon flux density on the distribution of nitrogen among leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves.
Oecologia 97: 451-457.
Hikosaka, K., Murakami, A., Hirose, T. (1999) Balancing carboxylation and regeneration of ribulose-1,5- bisphosphate in leaf photosynthesis: temperature acclimation of an evergreen tree, Quercus myrsinaefolia. Plant, Cell and Environment 22: 841–849.
Hirose, T., Werger, M. J. A., Pons, T. L., van Rheenen, J. W. A. (1988) Canopy structure and leaf nitrogen distribution in a stand of Lysimachia vulgaris L. as influenced by stand density. Oecologia 77: 145-150.
Hollinger, D. Y. (1996) Optimality and nitrogen allocation in a tree canopy. Tree Physiology 16: 627-634.
Holm, G. (1954) Chlorphyll mutations in barley. Acta Agriculturae Scandinavica 4: 457-461.
Hopkins, W. G. (1999) Introduction to plant physiology. 2rd ed., 512p John Wiley and Sons, Inc., New York.
IPCC, 1997. The Science of Climate Change. Cambridge University Press, pp. 572. New York.
IPCC, 2001. Climate Change 2001: Working Group I: the Scientific Basis. Cambridge University Press, New York.
Ivanova, L. A., Ivanov, L. A., Ronzhina, D. A., Pyankov, V. I. (2008) Shading-induced changes in the leaf mesophyll of plants of different functional types. Russian Journal of Plant Physiology 55: 211–219.
Jarvis, P. G., McNaughton, K. G. (1986) Stomatal control of transpiration: scaling up from leaf to region. Advances in Ecological Research 15: 1-49.
106
Jones, H. G. (1985) Partitioning stomatal and non-stomatal limitations to photosynthesis. Plant, Cell and Environment 8: 95–104.
Jones, H. G., Higgs, K. H. (1989) Empirical models of the conductance of leaves in apple orchards. Plant, Cell and Environment 12: 301-308.
Kangasjärvi, S., Neukermans, J., Li, S., Aro, E. M., Noctor, G. (2012) Photosynthesis, photorespiration, and light signalling in defence responses. Journal of Experimental Botany 10: 1-18.
Kattge, J., Knorr, W. (2007) Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant, Cell and Environment 30: 1176–1190.
Kiehl, J. T., Trenberth, K. E. (1997) Earth’s annual global mean energy budget. Bulletin of the American Meteorological Society 78 (2): 197-208.
Kobayashi, H., Inoue, S., Gyokusen, K. (2010) Spatial and temporal variations in the photosynthesis-nitrogen relationship in a Japanese cedar (Cryptomeria japonica D. Don) canopy. Photosynthetica 48(2): 249-256.
Koyama, K., Kikuzawa, K. (2011) Reduction of photosynthesis before midday depression occurred: leaf photosynthesis of Fagus crenata in a temperature forest in relation to canopy position and a number of days after rainfall. Ecological Research 26: 999-1006.
Kubiske, M. E., Abrams, M. D. (1993) Stomatal and non-stomatal limitations of photosynthesis in 19 temperate tree species on contrasting sites during wet and dry years. Plant, Cell and Environment 16: 1123–1129.
Kull, O., Niinemets, Ü. (1998) Distribution of leaf photosynthetic properties in tree canopies: comparison of species with different shade tolerance. Functional Ecology 12: 472-479.
Lambers, H., Chapin III, F. S., Pon, T. L. (1998) Plant physiological ecology. pp.540.
107
Springer-Verlag, New York.
Lambers, J., Sands, P. (2011) The carbon balance of tree and stands. In: James, Ehleringer R., et al. (Eds.), Physiological Ecology of Forest Production: Principals, Process and Models, first ed. Elsevier Inc., London, pp. 118-129.
Leuning, R., Kelliher, F. M., De Pury, D. G., Schulze, E. D. (1995) Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant, Cell and Environment 18: 1183–1200.
LeQuéré, C., Raupach, M. R., Canadell, J. G., Marland, G. et al. (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci.
Liang Y.L., Lin, T.C. , Hwong, J.L. , Lin, N.H. , Wang, C.P. (2009) Fog and precipitation chemistry at a mid-land forest in central Taiwan. Journal of Environmental Quality 38: 627-636.
Lichtenthaler, H. K., Buschmann, C., Döll, M., Fietz, H. J., Bach, T., Kozel, U., Meier, D., Rahmsdorf, U. (1981) Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthesis Research 2: 115-141.
Lim, H., Lee, K. H., Lee, K. H., Park, I. H. (2013) Biomass expansion factors and allometric equations in an age sequence for Japanese cedar (Cryptomeria japonica) in southern Korea. Jourcal of Forest Research 18: 316-322. Lombardozzi, D., Levis, S., Bonan, G., Sparks, J. P. (2012) Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance. Biogeosciences Discussion 9: 4245-4283.
Markwell, J. P., Thornber, J. P., Boggs, R. T. (1979) Higher plant chloroplasts: evidence that all the chlorophyll exists as chlorophyll-protein complexes. Proceedings of the National Academy of Sciences of the United States of America 76: 1233-1235.
108
Massman, W. J., Lee, X. (2002) Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agricultural and Forest Meteorology 113: 121-144.
Matsuzaki, J., Norisada, M., Kodaira, J. et al. (2005) Shoots grafted into the upper crowns of tall Japanese cedar (Cryptomeria japonica D. Don) show foliar gas exchange charateristics similar to those of intact shoots. Trees 19: 198-203.
Medlyn, B. E., Dreyer, E., Ellsworth, D., Forstreuter, M., Harley, P. C., Kirschbaum, M. U. F. et al. (2002) Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant, Cell and Environment 25:1167–1179.
Miehle, P., Livesley, S. J., Feikema, P. M., Lic, C., Arndt, S. K. (2006) Assessing productivity and carbon sequestration capacity of Eucalyptus globulus plantations using the process model Forest-DNDC: calibration and validation. Ecological Modeling 192: 83-94.
Miyashita, A., Sugiura, D., Sawakami, K., Ichihashi, R., Tani, T., Tateno, M.(2012) Long-term, short-interval measurements of the frequency distributions of the photosynthetically active photon flux density and net assimilation rate of leaves in a cool-temperate forest. Agricultural and Forest Meteorology 152: 1– 10.
Monsi, M., Saeki, T. (1953) Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Japanese Journal of Botany 14: 22-52.
Muraoka, H., Koizumi, H. (2005) Photosynthetic and structural characteristics of canopy and shrub trees in a cool-temperate deciduous broadleaved forest: Implication to the ecosystem carbon gain. Agricultural and Forest Meteorology 134: 39-59.
Nemali, K. S., van Iersel, M. W. (2004) Acclimation of wax begonia to light intensity: changes in photosynthesis, respiration, and chlorophyll concentration. Journal of
109
the American Society for Horticultural Science 129(5): 745-751.
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., Running, S. W. (2003)Climatedriven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563.
Ni, B. R., Pallardy, S. G. (1992) Stomatal and non-stomatal limitations to net photosynthesis in seedlings of woody angiosperms. Plant Physiology 99: 1502–1508.
Niinemet, U., Tenhunen, J. D., Beyschlag, W. (2004) Spatial and age-dependent modifications of photosynthetic capacity in four Mediterranean oak species. Functional Plant Biology 31, 1179-1193.
Niinemets Ü., Díaz-Espejo A., Flexas J., Galmés J., Warren C. R. (2009) Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. Journal of Experimental Botany 60, 2249–2270.
Niinemets, Ü. (2010) A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Resaerch 25: 693–714.
Obregon A., Downie, C.G., Downie, Gradstein, S. R., Rollenbeck, R., Bendis, J. (2011) Canopy level fog occurrence in a tropical lowland forest of French Guiana as a prerequisite for high epiphyte diversity. Agricultural and Forest Meteorology 151: 290-300.
Oguchi, R., Hikosaka, K., Hirose, T. (2005) Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant, Cell and Environment 28: 916–927.
Pearcy, R. W., Osteryoung, K., Calkin, H. W. (1985) Photosynthetic responses to dynamic light environments by Hawaiian trees. Plant Physiology 79: 896-902.
110
Pfannschmidt, T., Yang, C. (2012) The hidden function of photosynthesis: a sensing system for environmental conditions that regulates plant acclimation responses. Protoplasma.249 (2): 125–136.
Phat, N. K., Knorr, W., Kim, S. (2004) Appropriate measures for conservation of
terrestrial carbon stocks e analysis of trends of forest management in Southeast
Asia. Forest Ecology and Management 191: 283-299.
Pisek, A., Winkler, E. (1958) Assimilationsvermögen und Respiration der Fichte (Picea excelsa LINK) in verschiedenen Höhenlagen und der Zirbe (Picea abies L.) an der alpinen Waldgrenze. Planta 51: 518–543.
Ponti, F., Minotta, G., Cantoni, L., Bagnaresi, U. (2004) Fine root dynamics of pedunculate oak and narrow-leaved ash in a mixed hardwood plantation in clay soils. Plant and Soil 259: 39–49.
Rabinowitch, E. I. (1951) Photosynthesis and related processes, 2(1).: Interscience Publishers, New York.
Ribeiro, R. V., Machado, E. C., Oliveira, R. F. (2004) Growth and leaftemperature
effects on photosynthesis of sweet orange seedlings infected with Xylella fastidiosa. Plant Pathology 53:334–340.
Sage, R. F., Kubien, D. S. (2007) The temperature response of C3 and C4 photosynthesis. Plant, Cell and Environment 30:1086–1106.
Sands, P. J. (1995) modelling canopy production. II. From single leaf photosynthetic parameters to daily canopy photosynthesis. Australian Journal of Plant Physiology 22: 593-601.
Losi, C. J., Siccama, T. G., Condit, R., Morales, J. E. (2003) Analysis of alternative
methods for estimating carbon stock in young tropical plantations. Forest
Ecology and Management 184: 355-368.
Seemann, J. R. (1989) Light adaptation/ acclimation of photosynthesis and the
111
regulation of Rubisco activity in sun and shade plants. Plant Physiology 91: 379-386.
Slatyer, R. O. (1978) Altitudinal variation in the photosynthetic characteristics
of snow gum, Eucalyptus pauciflora Sieb. Ex Sreng. VII. Relationships between gradients of field temperature and photosynthetic temperature optima in the Snowy Mountains area. Australian Journal of Botany 26: 111–121.
Stewart, J. B. (1988) Modelling surface conductance of pine forests. Agricultural and Forest Meteorology 43: 19-35.
Taiz, L. and Zeiger, E. (2002) Plant physiology. 3rd ed., pp. 112-221. Sinauer Associate, Inc., U.S.A.
Tang, Y., Kachi, N., Furukawa, A., Awang, M.B., (1999) Heterogeneity of light availability and its effects on simulated carbon gain of tree leaves in a small gap and the understory in a tropical rain forest. Biotropica 31 (2): 268–278.
Tange, T., Someya, M., Norisada, M., Masumori, M.(2013) Photosynthetic limitation of similar-height Cryptomeria japonica trees growing at different rates. Photosynthetica 51(1): 158-160.
Terashima, I., Hanba Y. T., Tazoe, Y., Vyas, P., Yano, S. (2006) Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. Journal of Experimental Botany 57: 343–354.
Terashima, I., Hanba, Y.T., Tholen, D., Niinemets, Ü. (2011) Leaf functional anatomy in relation to photosynthesis. Plant Physiology 155: 108–116.
Thornley, J. H. M. (1998) Grassland dynamics: an ecosystem simulation model. Wallingford, Oxon: CAB International.
Thornley, J. H. M. (2002) Instantaneous canopy photosynthesis: Analytical expressions for sun and shade leaves based on exponential light decay down the canopy and an acclimated non-rectangular hyperbola for leaf photosynthesis.
112
Annals of Botany 89: 451-458.
Reich, P. B., Walters, M. B., Ellsworth, D. S. (1991) Leaf age and season influence the relationships between leaf nitrogen, leaf mass per area and photosynthesis in maple and oak trees. Plant, Cell and Environment 14: 251-259.
Rosati, A., Esparza, G., DeJong, T. M., Pearcy, R. W. (1999) Influence of canopy light environment and nitrogen availability on leaf photosynthetic characteristics and photosynthetic nitrogen-use efficiency of field-grown nectarine trees. Tree Physiology 19: 173-180.
Wang, J., Yu, Q., Li, J., Li, L. H., Li, X. G., Yu, G. R., Sun, X. M. (2006) Simulation of diurnal variations of CO2, water and heat fluxes over winter wheat with a model coupled photosynthesis and transpiration. Agricultural and Forest Meteorology 137: 194–219.
White, J. (1979) The plant as a metapopulation. Annual Review of Ecology, Evolution, and Systeatics 10: 109-145.
Wieser, G. (1997) Carbon dioxide gas exchange of cembran pine (Pinus cembra) at the alpine timberline during winter. Tree Physiology 17: 473–477.
Wieser, G. (2004) Environmental control of carbon dioxide gas exchange in needles of a mature Pinus cembra tree at the alpine timberline during the growing season. Phyton 44: 145–153.
Wieser, G., Oberhuber, W., Walder, L., Spieler, D., Gruber, A. (2010) Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps. Annals of Forest Science 67(201): 1-8.
Wilson, K. B., Baldocchi, D. D., Hanson, P. J. (2000) Quantifying stomatal and non-stomatal limitations to carbon assimilation resulting from leaf aging and drought in mature deciduous tree species. Tree Physiology 20: 787–797.
Wilson, K. B., Baldocchi, D. D., Hanson, P. J. (2001) Leaf age affects the seasonal
113
pattern of photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest. Plant, Cell and Environment 24: 571-583.
Yamori, W., Nokuchi, K., Terashima, I. (2005) Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant, Cell and Environment 28:536–547.
Yamori, W., Noguchi, K., Hikosaka, K., Terashima, I. (2010) Phenotypic Plasticity in Photosynthetic Temperature Acclimation among Crop Species with Different Cold Tolerances. Plant Physiology 152: 388–399.
Yang, C. M., Hsu, J. C., Shih, C. F. (1994) Response of chlorophyll a/b ratios in Yuan-Yang Lake Bryophytes to the alteration of light intensity. Proceedings of the National Science of Council, Republic of China- part B 18:134-137.
Yu, Q., Goudriaan, J., Wang, T. D. (2001) Modeling diurnal courses of
photosynthesis and transpiration of leaves on the bases of stomatal
and non-stomatal responses, including photoinhibition. Photosynthetica 39: 43–51.
Zhang, X. R., Tan, X. F., Wang, R. Q., Xu, N. N., Guo, W. H. (2013) Effects of soil moisture and light intensity on ecophysiological characteristics of Amorpha fruticosa seedlings. Journal of Forest Research 24(2): 293-300.
Zotz, G., Winter, K. (1993) Short-term photosynthesis measurements predict leaf carbon balance in tropical rain-forest canopy plants. Planta 191: 409-412.
Zotz, G., Winter, K. (1996) Diel pattern of CO2 exchange in rainforest canopy plants. In: Mulkey SS et al. (ed.) Tropical Forest Plant Ecophysiology. pp. 89-113. Chapman and Hall, New York.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 洪儷文、王亞男(2003) 樟樹不同冠層位置之光合作用淨生產力。中華林學季刊。36(1): 27-38。
2. 徐鎮暉、廖天賜、翁仁憲(2005) 不同海拔臺灣二葉松光合作用、同化產物累積、形成層活動之季節變化及針葉生長期之差異。中華林學季刊38(3):291-303。
3. 郭耀綸(2000)南仁山熱帶低地雨林白榕冠層及林下植物的光合作用。臺灣林業科學15(3):351-363。
4. 楊棋明、吳雅婷、劉翠雅、黃文達、黃秀鳳、趙璧玉(2004) 高等植物非葉綠色組織葉綠素含量及其a/b 比值之初探。華岡農科學報13:27-34。
5. 廖天賜、張安邦、翁仁憲(2002) 遮陰對大葉楠與香楠苗木光合作用及生理之影響。林業研究季刊24(1):1-10。
6. 劉知妤、王兆桓(2008) 以林齡─ 蓄積量模式估算柳杉及檜木人工林的碳吸存量。宜蘭大學生物資源學刊4(1):35-45。
7. 鄭智馨、陳彥睿、邱祈榮、林俊成、吳俊賢 (2011) 檳榔園轉作造林地之生態系統碳儲存量變化:以921地震後的中寮為例。中華林學季刊44(2):217-232。
8. 王餘厚(1997)。概談激勵士氣。人事月刊,24(3),45-47。
9. 李水源、吳純純、張世彗(民88)。特殊教育教師工作士氣之調查研究。臺北市立師範學院學報,30,431-450。
10. 林榮模(民85)。行政革新的士氣激勵—中西士氣激勵之比較。勞工行政,103,27-32。
11. 吳宗立(民86)。團體動力在班級輔導的應用。學生輔導通訊,51,112-117。
12. 曾志朗(民90)。教師的專業成長與新使命。人本教育札記。147,61-64。
13. 蔡崇建(民74)。特殊教育教師異動狀況及其相關因素之探討。特殊教育研究學刊,1,1-44。
14. 范揚松(民88)。激發士氣提高生產力,游於藝雙月刊,14(3)。http://hrd.gov.tw/09_develop/09_05_monthly/number14/14_3_1.asp
15. 謝天德(民87)。國小教師工作投入、團體凝聚力與社會閒散關係之研究。國立屏東師範學院國民教育研究所未出版之碩士論文。
 
無相關點閱論文