跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 02:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張夆榕
研究生(外文):Feng-Rong Chang
論文名稱:熱處理技術應用於國產柳杉造林木性質之研究
論文名稱(外文):Effects of Heat Treatment on the Properties of Domestic Japanese Cedar Plantation Wood
指導教授:張豐丞張豐丞引用關係
指導教授(外文):Feng-Cheng Chang
口試委員:楊德新吳志鴻張惠婷
口試委員(外文):Te-Hsin YangJyh-Horng WuHui-Ting Chang
口試日期:2015-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:88
中文關鍵詞:中小徑木柳杉實大材熱處理改質加速耐候容許應力
外文關鍵詞:Small-and medium-sized C. japonicaC. japonica lumberHeat treatmentAccelerated weatheringAllowable stress
相關次數:
  • 被引用被引用:1
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係將國產中小徑木柳杉(Cryptomeria japonica),於空氣環境下進行熱處理,探討最終處理溫度(170、190、210°C)、持溫時間(1、2 及 4 h)等變因,尋求最佳熱處理條件。試驗項目包括質量損失、密度、平衡含水率、色差值、粗糙度、接觸角、尺寸安定性、機械性質、化學分析、傅立葉紅外線光譜、加速耐候試驗、戶外耐候試驗,以及熱處理前後柳杉實大材作為結構用材之工程性能。
經試驗結果發現,柳杉之密度、含水率與吸濕性皆隨熱處理溫度與時間增加而減少,而質量損失率則隨熱處理溫度與時間增加而上升。另外,柳杉材色會隨熱處理溫度時間增加變深,而熱處理柳杉表面之疏水性則有提升。而熱處理後化學組成之改變,多醣類之特定吸收峰強度隨熱處理溫度提升有減弱之趨勢,木質素則反之;而全纖維素、半纖維素及α-纖維素含量減少,木質素相對比例則增加。
190°C-2 h熱處理之柳杉,其抗彎彈性模數(MOE)會較未處理柳杉有些微上升;而柳杉經熱處理後抗彎強度(MOR)與剪斷強度則會隨著熱處理溫度與時間之增加而下降;170oC熱處理柳杉之壓縮強度則會有明顯上升。根據MOE變化決定,190°C-2 h應為本試驗對中小徑木熱處理改質之最佳條件。
耐候性質方面,隨加速耐候時間增加,熱處理與未處理柳杉MOE與MOR保留率皆有下降之趨勢,且熱處理後柳杉色差值隨著耐候時間之增加會較未處理者低。而戶外耐候試驗後,未處理與190°C-2 h熱處理柳杉,密度及機械性質會隨著耐候天數增加而下降。
評估未處理與熱處理柳杉實大材用以結構用途之可行性,透過機械分等,未處理與190°C-2 h熱處理之柳杉,隨著MOE等級增加,密度、DMOE、MOE與MOR皆有上升趨勢,且熱處理後柳杉之MOE等級會集中在E70與E90。而透過未處理與熱處理柳杉分等材抗彎性質之特徵值與容許應力值分析,未來可將未處理與熱處理柳杉實大材,作為結構用材使用。


This study investigated using heat treatments to treat wood sampled from small-and medium-diameter C. japonica in the medium of air. The heat treatment parameters (e.g., temperature and treatment duration) were examined to optimize the heat-treatment process. This study conducted a set of tests to examine the heat-treatment-induced changes in wood characteristics, such as mass, moisture content, density, color, roughness, dimensional stability, contact angle on the surface, and mechanical and chemical properties. In addition, accelerated weathering tests, outdoor weathering tests, and Fourier transform infrared spectroscopy analyses were performed. Furthermore, the feasibility of the structural use of untreated and heat-treated C. japonica wood was evaluated.
The results revealed that when heat treatment temperature and duration increased, the wood density, equilibrium moisture content, and hygroscopic decreased, but the mass loss increased. Moreover, when heat treatment temperature increased, the wood color darkened and hydrophobicity increased. After the heat treatments, the changes in the holocellulose, hemicellulose, and α-cellulose contents have shown a decreasing tendency. A favorable relationship between the absorptive peak of polysaccharides and chemical composition was observed.
After the wood was treated at 190°C for 2 h, the MOE increased. Moreover, the increase of heat treatment temperature and duration led to decreased MOR and shear strength but increased compression strength. The increase of the MOE indicated that the treatment temperature of 190°C and duration of 2 h can be used to achieve an optimal heat treatment efficacy.
In the accelerated weathering tests, when the accelerated weathering duration increased, the retention of the MOE and MOR of the untreated and heat-treated wood decreased. But the CIE Delta E of the heat-treated wood after accelerated weathering was lower than the untreated wood. The results of outdoor weathering tests indicated that the density and mechanical strength of untreated and treated (190°C and 2 h) wood decreased due to the increase of weathering time.
According to the E-rating conducted, the density, dynamic MOE, MOE, and MOR increased associated with better grades. After C. japonica lumber was heat treated, the MOE values of the treated lumber clustered around grade E70 and E90. According to the parametric tolerance limit and allowable stress of the heat-treated lumber, the E-rated untreated and treated (190°C and 2 h) lumber could be used for structural applications.


誌謝 I
摘要 II
Abstract III
圖目錄 VIII
表目錄 X
第一章 前言 1
第二章 文獻回顧 4
一、熱處理木材改質背景 4
二、熱處理木材主要組成分降解機制 6
三、熱處理木材物理之性質 10
四、熱處理材機械性質 14
五、熱處理材耐候性質 16
第三章 材料與方法 20
一、試驗材料 20
(一)小尺寸試材 20
(二)實尺寸試材 20
(三)熱處理製程 20
二、熱處理柳杉性質分析 21
(一)物理性質 21
(二)化學分析 23
(三)表面性質 26
(四)非破壞檢測法 27
(五)機械性質 28
(六)加速耐候試驗 30
(七)戶外耐候試驗 30
(八)統計分析 30
第四章 結果與討論 31
一、物理性質 31
(一)平衡含水率 31
(二)密度與質量損失率 32
(三)尺寸收縮率 35
(四)尺寸安定性 36
(五)吸濕性 37
二、表面性質 39
(一)電子顯微鏡觀察(Scanning electron microscope, SEM) 39
(二)色差試驗 40
(三)接觸角 41
(四)表面粗糙度 42
三、機械性質 43
(一)抗彎彈性模數 43
(二)抗彎強度 44
(三)壓縮強度 45
(四)剪斷強度 45
四、化學分析 47
(一)全纖維素、α纖維素、半纖維素 47
(二)木質素 48
(三)乙醇-甲苯抽出物 48
(四)FTIR分析 49
五、加速耐候試驗 50
(一)密度保留率 50
(二)抗彎強度 51
(三)壓縮強度 52
(四)剪斷強度 52
(五)MOE保留率 54
(六)MOR保留率 55
(七)色差值 56
六、戶外耐候試驗 60
(一)物理性質 60
(二)抗彎強度 62
(三)壓縮強度與剪斷強度 63
七、熱處理對實尺寸柳杉之性質 64
(一)目視分等後柳杉之基本性質 64
(二)目視分等後190°C-2 h熱處理柳杉之基本性質 65
(三)柳杉機械分等材之性質評估 67
(四)熱處理柳杉機械分等材之性質評估 68
(五)柳杉音學性質與抗彎性質之相關性 70
(六)熱處理柳杉音學性質與抗彎性質之相關性 73
(七)國產柳杉容許應力設計值評估 75
(八)國產熱處理柳杉容許應力設計值評估 78
第五章 結論 80
參考文獻 82


王松永(1992)木材物理學。國立編譯館主編。
李佳如、楊德新(2010)應用非破壞檢測技術評估杉木集成元之抗彎性質。林業研究季刊32(4):45-60。
李惠明、陸人望、嚴婷(2009)熱處理改性木材的性能分析I.熱處理材的物理力學
性能。木材工業23(2):43-45。
吳順昭、黃彥三、高健章(1974)強制振動法木材彈性模數之測定。中華林學季刊7(2):49-55。
卓志隆(2011)熱處理木材之物理與抗生物劣化特性。林業研究專訓18(5):12-18。
台灣區合板工業同業公會(2010)。台灣合板工業台灣區合板工業同業公會
20pp。
郭瑋玲(2012)柳杉與相思樹熱處理材之製造與性質。國立中興大學森林研究所碩士論文。
蔡明哲、陳克恭(2011)歐洲木材防腐工業與市場現況。林業研究專訓18(5):19-21。
張上鎮(1993)人工加速耐久性試驗之進展與應用。塗料與塗裝技術38:57-63。
張上鎮、王升陽(1995)抗白蟻性木材抽出成分之探討。林產工業 14(2):149–
159。
Akyildiz, M. H. and S. Ates (2008) Effect of heat treatment on equilibrium moisture content (EMC) of some wood species in Turkey. Res. J. Agric. & Biol. Sci. 4(6): 660–665.
Antonios, N. P. and P. Georgia (2010) Mechanical behavior of pine wood chemically modified with a homologous series of linear chain carboxylic acid anhydrides. Bioresour.Technol. 101:6147–6150.
Awoyemi, L. and I. P. Jones (2011) Anatomical explanations for the changes in properties of western red cedar (Thuja plicata) wood during heat treatment. Wood Sci. Technol. 45:261–267.
Ayadi, N., F. Lejeune, F. Charrier, B. Charrier and A. Merlin (2003) Color tability of heat-treated wood during artificial weathering. Holz als Roh- und Werkstoff. 61:221–226.
Ayrilmis, U. O. (2005) Variations in compression strength and surface roughness of heat-treated Turkish river red gum (Eucalyptus camaldulensis) wood. .J.wood Sci. 51:405–409.
Bekhta, P. and P. Niemz (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung. 57:539–546.
Bhuiyan, M. T. R. and N. H. N. Sobue (2000) Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J.wood Sci. 46:431–436.
Boonstra, M. J. and B. Tjeerdsma (2007) Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci Technol. 41:31–57.
Boonstra, M. J. and B. Tjeerdsma (2006) Chemical analysis of heat treated softwoods. Holz Roh Werket. 64:204–211.
Chaouch, M., M. Petrissans, A. Petrissans and P. Gerardin (2010) Use of wood elemental composition to predict heat treatment intensity and decay resistance of different softwood and hardwood species. Polym. Degrad. Stab. 95:22–55.
Chen, Y., Y. Fan, J. Gao and H. Li (2010) Coloring characteristics of in situ lignin during heat treatment. Wood Sci. Technol. DOI 10.1007/s00226-010-0388-5.
Del, C. H. S., R. Q. de Souza, R. M. Thompson, D. E. Teixeria, E. Y. A. Okino and A. F. da Costa (2008) Properties after weathering and decay resistance of a Thermally modified wood structural board. Int. Biodeterior. Biodegrad. 62:448–454.
Dirckx, O., D, Masson and X. Deglise (1987) Actes du 2e`me colloque Sciences et industries du bois. Nancy 22–24 Avril Tome II.
Dirckx, O. (1988) Etude du comportement photochimique de l’Abiesgrandis sous irradiation solaire-The`se de 3iemecycle en sciences dubois, Universite ́de NancyI.
Dirckx, O. M. C., Triboulot-Trouy A, Merlin and X, Deglise (1992) Modifi-cations de la couleur du bois d’Abies grandis expose ́a`la lumie`resolaire. Ann Sci For. 49:425–447.
Dubey, M. K., S. Pang and J. Walker (2011) Effect of oil heating age on colour and dimensional stability of heat treated Pinus radiate. Eur. J. Wood Prod. 69:255–262.
Elder, T. (1991) Pyrolysis of wood. Wood and cellulose chemistry. Marcel Dekker. Inc. New Yourk, USA, pp.665–669.

Esteves, B., A. V. Marques, I. Domingos and H. Pereira (2008) Heat-induced colour
changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood . Wood Sci. Technol. 42:369–384.
Esteves, B. M. and H. M. Pereira (2009) Wood modification by heat treatment:review. Bioresources 4(1):370–404.
Feist, W. C., and D. N. S. Hon (1984) Chemistry of weathering and protec-tion—In"The chemistry of Solid wood", R.M. Rowell, ed. Advancesin chemistry series 207," Am. Chem. Soc., Washington D.C.
Feist, W. C., and J. Sell (1987) Weathering behavior of dimensionally stabilized wood treated by heating under pressure of nitrogen gas. Wood Fiber Sci 19:183–195.
Forest Products Laboratory (2010) Wood handbook - Wood as an engineering material. General Technical Report FPL-GTR-190. Madison, WI: U.S.
Futo, L. P. (1974) Der photochemische Abbau des Holzes als Pra ̈para-tions- and Analusenmethode. Holz Roh- Werkstoff 32:303–31.
Gobakken, L. R. and M. Westin (2008) Surface mould growth on five modified wood substrates coated with three different coating systems when exposed outdoors. Int. Biodeterior. Biodegrad. 62:397-402.
Gündüz, G., S. Korkut and D. S. Korkut (2008). "The effects of heat treatment on physical and technological properties and surface roughness of Camiyanı Black Pine Pinus nigraArn. subsp. pallasiana var. pallasiana wood", Bioresource Technol.99(7), 2275–2280.
Gunduz, G. and D. Aydemir (2009) Some physical properties of heated Hornbeam
(Carpinus betulus L.) wood. Dry. Technol. 27:714–720.
Hakkou, M., M. Petrissans, A. Zoulalian and P. Gerardin (2005a) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis.Polym.Degrad.Stab.89:1–5.
Hakkou, M., M. Pétrissans, I. E. Bakali, P. Gérardin and A. Zoulalian (2005b) Wettability changes and mass loss during heat treatment of Wood. Holzforschung 59:35–37.
Halabe, U. B., G. M. Bidigalu, H. V. S. Gangarao and R. J. Ross (1997) Nondestructive evaluation of green wood using stress wave and transverse vibration techniques. Mater. Eval. 55(9):1013–1018.
Hanhijärvi, A. (1999) Deformation properties of Finnish spruce and pine wood in tangential and radial directions in association to high temperature drying. Part II. Experimental results under constant conditions (viscoelastic creep). Holz Roh Werkst. 57(5):361–365.
Hill, C. A. S. (2006) Wood Modification-Chemical, Thermal and other Processes.John Wiley & Sons,Chichester, UK, pp.100–127.
Hon, N. S. (1981) Photochemical degaradation of lignocellulosic materials.In: "Developments in Polymer degradation", N. Grassi, ed. Appl Sci Publ, London.
Hiltunen, E., T. T. Pakkanen and L. Alvila (2006) Phenolic compounds in silver birch
(Betula pendula Roth) wood. Holzforschung. 60:519–527.
Jämsä, S. and P. Viitaniemi (2001) HeatTreatment of wood : Better durability without chemicals,” in pp. 9-13 Proceedings of special seminar of the European commission, Research Di-rectorate, Political Co-Ordination and Strategy(COST), COST Action E22, Environmental optimisation of wood protection. Antibes,France: European Commission, COST.
Johansson, D. (2005) Strenght and colour response of solid wood to heat treatment. Division of Wood Technology. Luleå University of Technology. Department of Skellefteå Campus. pp.13–17.
Kalnins, M. A. (1966) Photochemical degradation of wood–In: "surface characteristics of wood as they affect durability of finishes", U.S. For. Serv., Res. Pap. FPl 57.
Kocaefe, D., Poncsak, S. and Boluk, Y. (2008). Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen, BioResources. 3(2):517–537.
Kocaefe, D., S. Poncsak, J. Tang and M. Bouazara (2009) Effect of heat treatment on the mechanical properties of North American jack pine:thermo gravimetric study.J.Mater.Sci. 45:68–687.
Kollmann, F., D. Fengel (1965) Änderungen der chemischen Zusammensetzung von Holz durch thermische Behandlung. Holz Roh- Werkstoff. 23:461–468.
Korkut, S. and I. Bektas (2008) The effects of heat treatment on physical properties of
Uludag fir (Abies bornmuelleriana) and Scots pine (Pinus sylvestris L.) wood. For. Prod. J. 58: 95–99.
Korkut, S., M. H. Alma and Y. K. Elyildirim (2009) The effects of heat treatment on physical and technological properties and surface roughness of European Hophornbeam (Ostrya carpinifolia Scop.) wood, Afr. J. Biotechnol. 8 (20):5316–5327.
LeVan, S. L. and M. Collet (1989) Choosing and applying fire-retardant treated plywood and lumber for roof designs. Gen. Tech. Rep. FPL-GTR-62. USDA Forest Serv., Forest Prod. Lab., Madison, WI.
Lin, S. Y. and K. P. Kringstad (1970) Photosensitive groups in lignin and lignin model compounds, Tappi. 53(4):658–66.
Manninen, A. M., P. Pasanen and J. K. Holopainen (2002) Comparing the VOC emissions between air-dried and heat-treated Scots pine wood. Atmos. Environ. 36: 1763–1768.
Mazela, B., R. Zakrzewski, W. G. Kowiak, G. Cofta, and M. Bartkowiak (2004) Resistance of thermally modified wood to basidiomycetes, Wood Technol. 7(1): 253–262.
Mazet, J. F. (1988) Couleur et qualite ́des placages de chene et e ́tude deleur comportement photochimique. Thesis in Wood Science, Nancy IUniversity.
Mitsui, K., H. Takada, M. Sugiyama and R. Hasegawa (2001) Changes in the properties of light-irradiated wood with heat treatment: part 1 Effect of treatment conditions on the change in colour. Holzforschung. 55:601–605.
Norrstro, M. H. (1969) Light absorbing properties of pulp and paper components. Svensk Paperstidn. 72:25–38.
Nuopponen, M., T. Vuorinen, S. Jamsa and P. Viitaniemi (2003) The effects of a heat treatment on the behavior of extractives in softwood studied by FTIR spectroscopic methods.Wood Sci.Technol. 37:109–115.
Rusche, H. (1973) Thermal degradation of wood at tempertures up to 200oC part I:strength properties of dried wood after heat-treatment. Holz Roh Werket. 31:273–281.
Sandermann, W. and F. Schlambom (1962) On the effect of filtred ultraviolet light on wood—Part I and Part II. Holz Roh- Werkstoff. 20:245–285.
Schneider, A. (1973) Investigations on the convection drying of lumber at extremely high tempertures. Holz Roh Werks. 31:198–206.
Sernek, M., F. A. Kamke and W. G. Glasser (2004) Comparative analysis of inactivated wood surface. Holzforschun. 58:22–31.

Shen, D. K., S. Gua and A. V. Bridgwater (2010) Study on the pyrolytic behavior of xylan-based hemiceelulose using TG-FTIR and Py-GC-FTIR. J. Anal. Appl. Pyrolysis. 87:199–206.
Shi, J. L., D. Kocaefe, T. Amburgey and J. Zhang (2007) Acompartive study on brown-rot fungusdecay and subterranean termite resistance of thermally-modified and ACQ-C-treatedwood.Holz Roh Werkst. 65:353–358.
Shi, J. L., D. Kocaefe and J. Zhang (2007).Mechanical behaviour of quebec wood species heat-treated using thermowood process. Holz Roh Werkst, 65:255–259.
Sivonen, H., S. Maunu, F. Sundholm, S. Jämsä and P. Viitaniemi (2002) Magnetic resonance studies of thermally modified wood. Holzforschung. 56:648–654.
Stamm, A. J. and L. A. Hansen (1937) Minimizing wood shrinkage and swelling: Effect of heating in various gases. Ind. Eng. Chem. 29(7):831–833.
Sundqvist, B. (2004) Colour changes and acid formation in wood during heating. Doctoral Thesis, Lulea University of Technology. p.10.
Theander, O. and D. A. Nelson (1988) Aqueous, high-temperature transformation of carbohydrates relative to utilization of biomass. Adv. Carbohydr. Chem. Biochem. 46:273–2326.
ThermoWood Asscoiation (2003) ThermoWood Handbook. Finnish.
Tuong, V. M. and Li, J. (2010). Effect of heat treatment on thechange in color and dimensional stability of acacia hybrid wood, BioResources. 5(2):1257–1267.
Udaka, E. and T. Furuno (2003) Change in crystalline structure of compressed wood by treatment with a closed heating system. Mokuzai Gakkaishi. 49:1–6.
Vick, C. B. (1999) Adhesive bonding of wood materials. In: Wood Handbook – Wood as an Engineering Material. USDA Forest Products Laboratory, Madison, WI. pp: 9-1–9-23.
Viitaniemi, P. and S. Jamsa (1996) Modification of wood with heat treatment. VTT Research Report Publications 814.Espoo, Finland, 1–48.
Wang S. Y., J. H. Chen, M. J. Tsai, C. J. Lin and T. H. Yang (2008) Grading of softwood lumber using non-destructive techniques. J. Mat. Process. Technol, 208:149–158.
Wang, Y. C. and J. C. Lin (2011) Analysis of timber supplier selection and domestic timber requirements of the forest products industry in Taiwan. Taiwan J For Sci, 26(2):135–149.

Winandy, J. and J. Morrell (1993) Relationship between incipient decay, strength, and chemical composition of Douglas-Fir heartwood. Wood Fiber Sci. 25(3):278–288.
Winandy, J. E. (1995) Effects of fire retardant treatments after 18 months of exposure at 150°C. Res. Note FPL-RN-0264. USDA Forest Serv. Forest Prod. Lab., Madison, WI.
Winandy, J., and P. Lebow (2001) Modeling strength loss in wood by chemical composition. part I. an individual component model for southern pine. Wood Fiber Sci. 33(2):239–254.
Windeisen, E. and G. Wegener (2008) Behaviour of lignin during thermal treatments of wood. Ind. Crops Prod. 27:57–62.
Wikberg, H. and S. Maunu (2004) Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydr. Polym. 58:461–466.
Yang, T. H., S. Y. Wang, C. J. Lin and M. J. Tsai (2008) Evaluation of the mechanical properties of Douglas-fir and Japanese cedar lumber and its structural glulam by nondestructive techniques. Constr. Build. Mater. 22:487–493.
Yildiz, S. (2002) .Physical, mechanical, technological and chemical properties of beech and spruce wood treated by heating. Ph.D.dissertation, Karadeniz Technical University, Trabzon, Turkey.
Yildiz, S., E. D. Gezer and U. C. Yildiz (2003) Mechanical and chemical behavior of spruce wood modified by heat. Build Environ. 41 (12):1762–1766.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top