跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 07:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉曜德
研究生(外文):Yao-Te Liu
論文名稱:發展改善芹菜連作障礙之策略
論文名稱(外文):Strategies for Improvement of Succession Cropping Obstacle of Celery
指導教授:林乃君林乃君引用關係
指導教授(外文):Nai-Chun Lin
口試委員:劉瑞芬洪挺軒謝奉家
口試委員(外文):Ruey-Fen LiouTing-Hsuan HungFeng-Chia Hsieh
口試日期:2015-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物醫學碩士學位學程
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:81
中文關鍵詞:連作障礙芹菜黃葉病尖鐮孢菌芹菜分化型相剋作用拮抗菌酚類降解菌
外文關鍵詞:Succession cropping obstacleFusarium yellowsFusarium oxysporum f. sp. apiiAllelopathyAntagonistic bacteriaPhenol-degrading bacterium
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1534
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
芹菜在台灣種植面積約 970 公頃,年產量約為 20,289 公噸,栽種面積多集中於雲林和彰化地區。芹菜栽培上,多年來有無法連作之問題存在,其目前解決策略主要為採用更換新地之方式來避開連作障礙問題,但此法最終將可能導致租金成本上升與無地可用之困境。過去的研究顯示,造成芹菜連作障礙的原因可能有二:一、由芹菜黃葉病菌 (Fusarium oxysporum f. sp. apii) 所導致;二、由芹菜的相剋作用所造成,此因芹菜分泌多種酚類化合物造成後作芹菜生長不良所致。因此本研究目的為釐清臺灣芹菜產區連作障礙之主因,並進一步發展利用土壤微生物改善此連作障礙之策略。結果顯示,於彰化和雲林芹菜產區採集之病株均可分離到尖鐮孢菌 (Fusarium oxysporum),進行科霍氏法則 (Koch''s postulates) 及分子與型態鑑定後,確認分離到的尖鐮孢菌為造成芹菜死亡的主要原因;經過寄主範圍測試,推測其應為芹菜黃葉病菌。本研究亦發現芹菜根部水萃液以及酚類化合物沒食子酸具有抑制芹菜種子發芽與胚根生長之現象,卻可促進F. oxysporum f. sp. apii 孢子發芽與發芽管長度,以及增加其產孢量之能力。由此結果可推斷芹菜相剋作用與 F. oxysporum f. sp. apii 有協力危害芹菜生長之可能。針對上述兩種病因,進行具防治潛力微生物之篩選,成功篩選出對芹菜黃葉病菌菌絲生長抑制率達 40% 以上之拮抗菌,AB2 與 AB78 兩菌株,於溫室進行以不同組合菌株防治芹菜黃葉病試驗,其結果顯示於不同防治時機點皆有良好防治效果。另外篩選出可於 20 小時內降解 99 % 以上沒食子酸之酚類降解細菌 PdB5-1,經由種子發芽試驗,確認 PdB5-1 可顯著改善芹菜植體水萃液抑制種子發芽之現象而提高發芽率。最後於溫室模擬田間連作障礙之環境,使用複合菌進行防治測試,結果顯示根部水萃液雖然使芹菜黃葉病之罹病度提高,但複合菌可顯著抑制土中黃葉病菌族群量,並且有效降低黃葉病之罹病度。本研究開發之複合菌證實可有效改善芹菜黃葉病發病率,可提供多年來無法解決之芹菜連作障礙問題一個新的防治策略。

In Taiwan, the cultivation area and yield of celery are about 970 hectare and 20,289 tonne, respectively, and Changhua and Yunlin are main region for production of celery. For many years, succession cropping obstacle of celery is a serious problem in Taiwan. So far, finding the virgin lands for cultivating celery is the major improvement strategy to avoid the succession cropping obstacle problem of celery, but this improvement strategy has resulted in increased rental costs and difficulties to find suitable places for planting celery. Previous studies concluded that, succession cropping obstacle of celery could be due to (1) Fusarium oxysporum f. sp. apii (Foa) and (2) allelopathy of celery. The objectives of this study were to find out the causing agent(s) of succession cropping obstacle of celery in Taiwan, and then to develop the improvement strategies using soil beneficial microbes. The results showed that Fusarium spp. could be isolated from diseased celery plants, which were collected from the major celery production areas of Changhua and Yunlin. The pathogen was identified as Fusarium oxysporum f. sp. apii by Koch''s postulates, molecular identification, morphological characteristics and a host range assay. On the other hand, aqueous extract of celery and gallic acid not only inhibited seed germination of celery, but also promoted spore germination and the germ-tube growth of Foa. These data indicated that the growth of celery may be inhibited by a synergistic effect of Foa and allelopathy in the field. We have successfully isolated the antagonistic bacteria AB2 and AB78 and the phenol-degrading bacterium PdB5-1. PdB5-1 can significantly degrade gallic acid with a degradation rate more than 99 % in less than 20 hours, and improve the growth inhibition phenomenon of seeds caused by root aqueous extract of celery. AB2 and AB78 could inhibit the growth of Foa mycelium with an inhibitory rate more than 40%, and had good control efficiency on Fusarium yellows of celery at different control timing in a greenhouse assay. In a greenhouse condition simulating the environment of succession cropping obstacle of celery in the field, mixed strains significantly reduced disease incidence and suppressed the population of Foa although the root aqueous extract of celery could increase disease incidence of Fusarium yellows. In the future, we expect to provide a new improvement strategy to reduce the loss caused by succession cropping obstacle of celery in the field using the mixed bacterial strains.

摘要---------------------------------------------------------------------------------------I
英文摘要-------------------------------------------------------------------------------III
目錄--------------------------------------------------------------------------------------V
表目錄----------------------------------------------------------------------------------IX
圖目錄-----------------------------------------------------------------------------------X
壹、前言---------------------------------------------------------------------------------01
貳、前人研究---------------------------------------------------------------------------02
参、材料與方法------------------------------------------------------------------------08
一、芹菜品種與播種方式-------------------------------------------------------------08
二、芹菜連作障礙原因探討----------------------------------------------------------08
(一)、芹菜連作障礙病株病原菌分析------------------------------------------08
1.1. 連作障礙病株採集---------------------------------------------------08
1.2. 病原菌分離、培養與保存--------------------------------------------09
1.3. 病原菌更新與繼代---------------------------------------------------09
1.4. 孢子懸浮液濃度測定方法----------------------------------------------------10
1.5. 病原性測試----------------------------------------------------------------------10
1.6. 病原菌鑑定----------------------------------------------------------------------11
1.6.1. 真菌染色體 DNA之抽取--------------------------------------------11
1.6.2. 聚合酶連鎖反應--------------------------------------------------------12
1.7. 病原菌接種濃度測試----------------------------------------------------------13
1.8. 寄主範圍測試-------------------------------------------------------------------13
(二)、芹菜相剋作用病因分析---------------------------------------------------14
2.1 芹菜根莖水萃液製備-----------------------------------------------------------14
2.2. 芹菜植體水萃液對芹菜種子生長之影響測試----------------------------14
(三)、芹菜相剋物質與 Fusarium oxysporum f. sp. apii 之關係-----------14
3.1 沒食子酸 (gallic acid) 對 F. oxysporum f. sp. apii 孢子生長之影響測
試----------------------------------------------------------------------------------14
3.2 沒食子酸 (gallic acid) 對 F.oxysporum f. sp. apii 產孢之影響
測試-------------------------------------------------------------------------------15
3.3 芹菜根莖水萃液對 F. oxysporum f. sp. apii 孢子生長影響測試-------------------------------------------------------------------------------------16
3.3.1. 標準曲線製作-----------------------------------------------------------16
3.3.2. 待測溶液之測定--------------------------------------------------------16
三、發展利用微生物改善芹菜連作障礙之策略-----------------------------------17
(一)、芹菜黃葉病防治菌之篩選------------------------------------------------17
1.1. 土壤微生物分離與保存-------------------------------------------------------17
1.2. 具拮抗芹菜黃葉病菌能力之菌株初步篩選-------------------------------17
1.3. 拮抗潛力菌株對 Fusarium oxysporum f. sp apii 之抑制能力測試---18
(二)、酚類降解細菌之篩選-----------------------------------------------------18
2.1. 土壤酚類降解潛力細菌之初步分離----------------------------------------18
2.2. 酚類降解細菌之降解能力篩選----------------------------------------------19
2.3. 酚類降解細菌 PdB5-1 對沒食子酸與芹菜根部水萃液之降解曲線-19
2.4. 酚類降解菌 PdB5-1 改善芹菜根莖水萃液對種子生長之抑制現象-20
(三)、具改善潛力菌株之鑑定------------------------------------------------------------20
3.1. 16S ribosomal RNA 基因序列定序---------------------------------20
3.1.1細菌染色體 DNA 之抽取---------------------------------------------21
3.1.2. 聚合酶連鎖反應與16S rRNA 基因序列定序--------------------22
3.2 細菌脂肪酸圖譜分析比對-------------------------------------------23
(四)、不同組合拮抗菌對 Fusarium oxysporum f. sp. apii 之溫室防治試驗-----23

4.1. 供試菌株懸浮液製備----------------------------------------------------------23
4.2. 組合拮抗菌對 Fusarium oxysporum f. sp. apii 之溫室防治試驗-----24
(五)、利用複合菌防治芹菜黃葉病與芹菜相剋物質之聯合病因---------------25
四、統計分析---------------------------------------------------------------------------26
肆、結果---------------------------------------------------------------------------------27
一、 芹菜連作障礙原因探討-------------------------------------------------------------------27
(一)、 芹菜連作障礙病株病原菌分析--------------------------------------------------27
1.1 芹菜連作障礙病株病原菌分離-----------------------------------------------27
1.2. 尖鐮孢菌分離株之病原性測試----------------------------------------------27
1.3. 病原菌分子鑑定----------------------------------------------------------------28
1.4. 病原菌寄主範圍測試----------------------------------------------------------28
1.5. 芹菜黃葉病菌 Foa Y5 接種濃度測試-------------------------------------28
(二)、 芹菜相剋作用病因分析-----------------------------------------------------------29
2.1. 芹菜植體水萃液對芹菜種子生長之影響測試----------------------------29
(三)、 芹菜相剋物質與 Fusarium oxysporum f. sp. apii之關係-------------------29
3.1. 沒食子酸對 F. oxysporum f. sp. apii 孢子生長之影響測試------------29
3.2. 沒食子酸對 F. oxysporum f. sp. apii 產孢量之影響---------------------30
3.3. 芹菜根莖水萃液對 F. oxysporum f. sp. apii 孢子生長之影響測試---30
二、發展利用微生物改善芹菜連作障礙之策略--------------------------------------------31
(一)、 土壤具拮抗芹菜黃葉病菌之潛力菌篩選--------------------------------------31
(二)、酚類降解細菌之篩選-----------------------------------------------------------32
2.1. 土壤酚類降解細菌篩選-------------------------------------------------------32
2.2. 酚類降解菌 PdB5-1 對沒食子酸與芹菜根部水萃液之降解曲線----32
2.3. 酚類降解菌 PdB5-1 改善芹菜根莖水萃液對種子生長之抑制現象-33
(三)、 具改善潛力菌株之鑑定-----------------------------------------------------------34
3.1. 16S rRNA 基因核酸序列分析------------------------------------------------34
3.2. 細菌脂肪酸圖譜分析比對----------------------------------------------------34
(四)、 不同組合拮抗菌對 Fusarium oxysporum f. sp. apii 之溫室防治試驗---35
(五)、 利用複合菌防治芹菜黃葉病菌與芹菜相剋物質之聯合病因-------------36
伍、 討論-------------------------------------------------------------------------------------------38
一、 芹菜連作障礙病因之探討----------------------------------------------------------------38
二、 發展利用拮抗微生物防治芹菜黃葉病-------------------------------------------------41
三、 發展酚類降解細菌對芹菜相剋作用之改善策略-------------------------------------44
四、 利用複合菌防治芹菜黃葉病與芹菜相剋物質之聯合病因-------------------------45
陸、 參考文獻-------------------------------------------------------------------------------------47
柒、 圖表-------------------------------------------------------------------------------------------55

表目錄
表一、本研究所使用之菌株資料--------------------------------------------------------------55
表二、芹菜連作障礙病株分離菌株病原性測試--------------------------------------------56
表三、再分離菌株對芹菜之病原性測試 ----------------------------------------------------57
表四、 病原菌 Foa Y5 及 Foa U7-2 之寄主範圍測試-----------------------------------58
表五、病原菌 FoaY5 接種濃度與罹病度之關係------------------------------------------59
表六、. 不同濃度芹菜水萃液對芹菜種子發芽率與胚根生長之影響------------------60
表七、 不同濃度之 gallic acid 對 Fusrium oxysporum f. sp. apii FoaY5 之孢子發率
與發芽管生長之影響----------------------------------------------------------------------------61
表八、. 不同濃度之芹菜植體萃取液對 Fusrium oxysporum f. sp. apii FoaY5 孢子發芽之影響-------------------------------------------------------------------------------------------62
表九、土壤分離不同菌株對 Fusarium oxysporum f. sp. apii 之菌絲成長抑制-------63
表十、酚類降解菌 PdB5-1 改善芹菜根部水萃液抑制種子生長之現象--------------64
表十一、不同組合拮抗菌對芹菜黃葉病之溫室防治試驗 -------------------------------65
表十二、 溫室試驗評估複合菌對芹菜連作障礙之改善效果----------------------------66










圖目錄
圖一、 本研究之試驗流程----------------------------------------------------------------------67
圖二、 田間芹菜連作障礙發生之情形-------------------------------------------------------68
圖三、 芹菜連作障礙病株分離之 14 株病原菌-------------------------------------------69
圖四、 芹菜連作障礙病株分離之尖鐮孢菌型態-------------------------------------------70
圖五、 利用 Fusarium oxysporum 專一性引子對 PFO2 與 PFO3 鑑定病原菌---71
圖六、 Gallic acid 對 Fusarium oxysporum f. sp. apii FoaY5 產孢量之影響---------72
圖七、Fusarium oxysporum f. sp. apii Foa Y5 孢子生長對芹菜植體水萃液總酚類化合物含量之影響----------------------------------------------------------------------------------73
圖八、利用 Folin-ciocalteu reagent 比色法進行酚類降解細菌之初步篩選-----------74
圖九、酚類降解菌 PdB5-1 對沒食子酸之降解效率--------------------------------------75
圖十、酚類降解細菌 PdB5-1 對芹菜根部水萃液內總酚類化合物之降解效率-----76
圖十一、AB2 菌株之初步鑑定結果---------------------------------------------------------77
圖十二、AB78 菌株之初步鑑定結果---------------------------------------------------------78
圖十三、PdB5-1 菌株之初步鑑定結果-------------------------------------------------------79
圖十四、不同組合拮抗菌對土壤中 Fusarium oxysporum f. sp. apii 族群量之影響-80
圖十五、溫室試驗中複合菌對芹菜連作障礙土中 F. oxysporum f. sp. apii 族群量之影響-------------------------------------------------------------------------------------------------81


王燕鸝、喻國輝、陳遠鳳、楊紫紅、陳燕紅、黎永堅。2010。化學農藥與芽孢桿
菌 M3、S11 菌株對西芹黃萎病的防治效果。中國蔬菜 20:57-61。
行政院農委會農業藥物毒物試驗所。2010。植物保護手冊。行政院農委會農業藥
物毒物試驗所。
李肇淇。2002。酚酸分解細菌的分類及分析。國立中興大學土壤環境科學研究所
碩士學位論文。71頁。
吳俊德。1996。酚類化合物之生物分解。國立中興大學土壤環境科學研究所
碩士學位論文。62頁。
林經偉、陳昇寬、許涵鈞。2009。芹菜合理化施肥技術。台南區農業改良場技術
專刊 139:1-4。
高衛婷、謝文瑞。1999。百合萎凋病菌 Fusarium oxysporum f. sp. lilii 生物學與病
原性測定。國立中興大學植物病理學研究所碩士學位論文。87 頁。
孫守恭、黃振文。1996。臺灣植物鐮胞菌病害。世維出版社。170頁。
陳玉雯。2001。芹菜連作障礙之研究。國立中興大學園藝學研究所碩士學位論
文。139頁。
陳和緯、張碧芳。2007。Bacillus mycoides、水楊酸類似物及harpin蛋白對萵苣幼
苗生長及抗病反應的效果國立中興大學植物病理學研究所碩士學位論文。65 頁。
曾紫華。1983。芹菜黃葉病之研究。國立中興大學植物病理學研究所碩士學位論
文。94 頁。
彭玉湘、黃振文。1998。萵苣萎凋病菌的病原性測定。植病會刊 7:121-127。
黃國鑫。2001。溶磷細菌分解兩種酚酸化合物之研究。國立中興大學土壤環境科
學研究所碩士學位論文。81頁。
莊茗凱、李思儀、黃振文。2012。台灣甘藍黃葉病菌的鑑定及其對十字花科蔬菜
的致病性。植病會刊21: 29-38。
Akram, W., Anjum, T., Ali, B., and Ahmad, A. 2013. Screening of native bacillus strains
to induce systemic resistance in tomato plants against fusarium wilt in split root
system and its field applications. Int. J. Agric. Biol. 15: 1289-1294.
Armstrong, G. M., and Armstrong, J. K. 1957. Celery yellows Fusarium causes wilt of
peas. Phytopathology 47: 2.
Armstrong, G. M., and Armstrong, J. K. 1962. Wilt of Mexican sunflower: causal agent,
the wilt Fusarium from celery. Phytopathology 52: 722.
Armstrong, G. M., and Armstrong, J. K. 1966. Wilt of Mexican sunflower caused by the
celery wilt Fusarium. Plant Dis. 50:391-393.
Armstrong, G. M., and Armstrong, J. K. 1967. The celery-wilt Fusarium causes wilt of
garden pea. Plant Dis. 51: 888-892.
Awuah, R. T., and Lorbeer, J. W. 1991. Methyl bromide and steam treatment of an
organic soil for control of Fusarium yellows of celery. Plant Dis. 75:123-125.
Awuah R.T., Lorbeer J.W., Ellerbrock L.A., 1986. Occurrence of Fusarium yellows of
celery caused by Fusarium oxysporum f. sp. apii race 2 in New York and its control. Plant Dis. 70: 1154-1158.
Bell A. A., Hubbard J. C., Liu L., Davis R. M., Subbarao K. V., 1998. Effects of chitin
and chitosan on the incidence and severity of Fusarium yellows of celery. Plant Dis. 82:322-328.
Bewick, T. A., Shilling, D. G., Dusky, J. A., and Williams, D. 1994. Effects of celery
(Apium graveolens) root residue on growth of various crops and weeds. Weed
Techn. 8: 625-629.
Brencic, A., Winans, S. C. 2005. Detection of and response to signals involved in
host-microbe interactions by plantassociated bacteria. Microbiol. Mol. Biol. Rev.
69:155-194.
Cao, Y., Zhang, Z., Ling, N., Yuan, Y., Zheng, X., Shen, B., and Shen, Q. 2011. Bacillus
subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots.
Biol. Fertil. Soils 47:495–506.
Cerkauska R.F., McDonalds R.M., 1989. Race 2 of Fusarium oxysporum f. sp. apii new
to Ontario. Plant Dis. 73: 859.
Cerkauska R.F., Chiva M., 1991. Soil densities of Fusarium oxysporum f. sp. apii race 2
in Ontario, and the association between celery cultivars resistance and
photocarcinogenic furocoumarins. Can. J. Plant Pathol. 13: 305-314.
Chang, P. F. L,, Damsz, B., Kononowicz, A. K., Reuveni, M., Chen, Z., Xu, Y.,
Hedges, K., Tseng, C. C., Singh, N. K., Binzel, M. L., Narasimhan, M. L.,
Hasegawa, P. M., and Bressan, R. A. 1996. Alterations in cell membrane
structure and expression of a membrane-associated protein after adaptation to
osmotic stress. Physiol Plant 98: 505–516.
Chen, L., Yang, X., Raza, W., Li, J., Liu, Y., Qiu, M., Zhang, F and Shen, Q. 2011.
Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in
rhizospheres of continuously cropped cucumbers. Appl. Microbiol. Technol. 89:
1653-1663.
Chen, S. Y., Guo, L. Y., Bai, J. G., Zhang, Y., Zhang, L., Wang, Z., Chen, J. X., Yang, H.
X., and Wang, X. J. 2015. Biodegradation of p-hydroxybenzoic acid in soil by
Pseudomonas putida CSY-P1 isolated from cucumber rhizosphere soil. Plant
Soil 389: 197-210.
Chen, S., Zhou, B., Lin, S., Li, X., and Ye, X. 2011. Accumulation of cinnamic acid
and vanillin in eggplant root exudates and the relationship with continuous
cropping obstacle. Afr. J. Biotechnol. 10:2659–2665.
Conners, I. L. 1967. An annotated index of plant diseases in Canada. Publ. 1251.
Research Branch, Can. Dep. Agric., Ottawa.

Dellaporta, S. L., Wood, J., and Hicks, J. B. 1983. A plant DNA minipreparation:
version II. Plant Mol. Biol. Reporter 1:19-21.
Edel, V., Steinberg, C., Gautheron, N., and Alabouvette, C. 2000. Ribosomal DNA-
targeted oligonucleotide probe and PCR assay specific for Fusarium oxysporum.
Mycol. Res. 104:518–526.
Elmer W.H., Lacy M.L., 1982. The reappearance of Fusarium yellows of celery in
Michigan. Phytopathology 72: 1135.
Hao, W. Y., Ren, L. X., Ran, W., and Shen, Q. R. 2010. Allelopathic effects of root
exudates from watermelon and rice plants on Fusarium oxysporum f. sp.
niveum. Plant Soil. 336:485-497.
Hart, L. P., and Endo, R. M. 1981. The effect of length of exposure to inoculum, plant
age, root development, and root wounding on Fusarium yellows of celery.
Phytopathology 71:77-79.
Hu, W., Wu, F., and Pan, K. 2012. Effects of root exudates from crop plants on the
growth of Fusarium oxysporum f. sp. niveum. Allelopathy J. 30(1):71-80.
Khan, F., Kumari, M., and Cameotra, S. S. 2013. Biodegradation of the allelopathic
chemical m-tyrosine by Bacillus aquimaris SSC5 involves the homogentisate
central pathway. Plos One 8: e75928.
Khanh, T. D., Chung, M. I., Xuan, T. D., and Tawata, S. 2005. The exploitation of
crop allelopathy in sustainable agricultural production. J. Agron. Crop
Sci. 191:172–184.
Lori, G. A., Wolcan, S. M., and Larran, S. 2008. Fusarium yellows of celery caused
by Fusarium oxysporum f. sp. apii in Argentina. J. Plant Pathol. 173-178.
Li, J. F., Li, L., and Sheen, J. 2010. Protocol: a rapid and economical procedure for
purification of plasmid or plant DNA with diverse applications in plant biology.
Plant Methods 6:1-8.
Li, Z. H., Wang, Q., Ruan, X., Pan, C. D., and Jiang, D. A. 2010. Phenolics and plant
allelopathy. Molecules 15: 8933-8952.
Li, H., Zhang, S. Y., Wang, X. L., Yang, J., Gu, J. D., Zhu, R. L., Wang, P., Lin, K. F.,
and Liu, Y. D. 2015. Aerobic biodegradation of trichloroethylene and phenol
co-contaminants in groundwater by a bacterial community using hydrogen
peroxide as the sole oxygen source. Environ. Technol 36:667-674.
Matsubara, Y., Okada, T., and Nahiyan, A. S. M. 2009. Tolerance to allelopathy and
Fusarium Disease, changes in antioxidative substances in mycorrhizal asparagus
plants raised in decline soil. In: VII international symposium on chemical and
non-Chemical soil and substrate disinfestation. 883: 417-423.
Martyn R.D., Barnes J.W., Amador J., 1987. Fusarium yellows in Texas. Plant Dis. 71:
651.
Michielse, C. B., Reijnen, L., Olivain, C., Alabouvette, C., and Rep, M. 2012.
Degradation of aromatic compounds through the β‐ketoadipate pathway is
required for pathogenicity of the tomato wilt pathogen Fusarium oxysporum
f. sp. lycopersici. Mol. Plant Pathol. 13:1089–1100
Mishra, S., Mishra, A., Chauhan, P. S., Mishra, S. K., Kumari, M., Niranjan, A., and
Nautiyal, C. S. 2012. Pseudomonas putida NBRIC19 dihydrolipoamide
succinyltransferase (SucB) gene controls degradation of toxic allelochemicals
produced by Parthenium hysterophorus. J. Appl. Microbiol. 112:793–808.
Muzaffar, S., Ali, B., & Wani, N. A. 2012. Effect of catechol, gallic acid and pyrogallic
acid on the germination, seedling growth and the level of endogenous phenolics in cucumber (Cucumis sativus L.). Int. J. Life Sci. Biotechnol. Pharm. Res. 1: 51-59.
Myresiotis, C. K., Karaoglanidis, G. S., Vryzas, Z., and Papadopoulou‐Mourkidou, E.
2012. Evaluation of plant‐growth‐promoting rhizobacteria, acibenzolar‐S‐methyl
and hymexazol for integrated control of Fusarium crown and root rot on
tomato. Pest Manag. Sci. 68:404–411
Neal, A. L., Ahmad, S., Gordon-Weeks, R., and Ton, J. 2012. Benzoxazinoids in root
exudates of maize attract Pseudomonas putida to the rhizosphere. PLos
One 7:e35498.
Nogales, J., Canales, Á., Jiménez‐Barbero, J., Serra, B., Pingarrón, J. M., García,
J. L., and Díaz, E. 2011. Unravelling the gallic acid degradation pathway in
bacteria: the gal cluster from Pseudomonas putida. Mol. Microbiol. 79:359–374.
Rebib, H., Hedi, A., Rousset, M., Boudabous, A., Limam, F., and Sadfi-Zouaoui, N.
2012. Biological control of Fusarium foot rot of wheat using fengycin-producing
Bacillus subtilis isolated from salty soil. Afr. J. Biotechnol. 11:8464–8475.
Rice, E. L.1974. Allelopathy. Academic Press, INC.424pp.
Said M., Ormrod D.J., 1989. Field survey for Fusarium yellows (Fusarium oxysporum f.
sp. apii, race 2) of celery in Clover Dale, British Columbia. Can. Plant Dis. Surv.
69: 71.
Schneider, R. W. 1984. Effects of nonpathogenic strains of Fusarium oxysporum on
celery root infection by F. oxysporum f.sp. apii and a novel use of the
Lineweaver-Burk double reciprocal polt technique. Phytopathology 74:646-653.
Shilling, D. G., Dusky, J. A., Mossier, M. A., and Bewick, T. A. 1992. Allelopathic
potential of celery residues on lettuce. J. Am. Soc. Hort. Sci. 117: 308–312
Schneider, R.W. and Norelli, J. E. 1981. A new race of Fusarium oxysporum f. sp. apii
in Calilornia. Phytopathology 71:108.
Steinkellner, S., Mammerler, R., and Vierheilig, H. 2008. Germination of Fusarium
oxysporum in root exudates from tomato plants challenged with different
Fusarium oxysporum strains. Eur. J. Plant. Pathol. 22:395-401.
Suga, H., Hirayama, Y., Morishima, M., Suzuki, T., Kageyama, K., and Hyakumachi,
M. 2013. Development of PCR primers to identify Fusarium oxysporum f. sp.
fragariae. Plant Dis. 97:619-625.
Tosu, P., Luepromchai, E., and Suttinun, O. 2015. Activation and immobilization of
phenol-degrading bacteria on oil palm residues for enhancing phenols
degradation in treated palm oil mill effluent. Environ. Eng. Res. 20:141-148.
Vujanovic, V., Hamel, C., Jabaji-Hare, S., and St-Arnaud, M. 2002. Development of a
selective myclobutanil agar (MBA) medium for the isolation of Fusarium
species from asparagus fields. Can. J. Microbiol. 48:84-1847
Wang, S., Yang, Q., Bai, Z., Wang, S., Wang, Y., and Nowak, K. M. 2015.
Acclimation of aerobic-activated sludge degrading benzene derivatives and
co-metabolic degradation activities of trichloroethylene by benzene derivative-
grown aerobic sludge. Environ. Technol. 36:115-123.
Wang, L. T., Lee, F. L., Tai, C. J., and Kasai, H. 2007. Comparison of gyrB gene
sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the
Bacillus subtilis group. Int. J. Syst. Evol. Microbiol. 57:1846–1850.
Wu, H. S., Liu, Y. D., Yang, X. I., Chen, X. Q., Wang, Z. H., Kong, X. Y., Liu, X. X.
and Yan, S. 2010. Growth responses of in vitro Fusarium oxysporum f. sp.
niveum to external supply of tannic acid. J. Environ. Biol. 31:1017-1022.
Yang, R. X., Gao, Z. G., Yao, Y., Liu, X., Sun, S. Q., and Wang, Y. 2014. Allelopathic
effects of phenolic compounds of melon root exudates on Fusarium oxysporum f.
sp. melonis. J. Appl. Ecol. 25: 2355-2360.
Yao, J., Allen C. 2006. Chemotaxis is required for virulence and competitive fitness of
the bacterial wilt pathogen Ralstonia solanacearum. J. Bacteriol. 188:3697-3708
Zaim, S., Belabid, L., and Bellahcene, M. 2013. Biocontrol of chickpea Fusarium wilt
by Bacillus spp. rhizobacteria. J. Plant Prot. Res. 53:177-183.
Zhang, Z. Y., Pan, L. P., and Li, H. H. 2010. Isolation, identification and
characterization of soil microbes which degrade phenolic allelochemicals.
J. Appl. Microbiol. 108:1839-1849.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top