跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/28 13:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉家宏
研究生(外文):Chia-Hung, Liu
論文名稱:阿拉伯芥熱休克反應中果膠酯化酶34調節氣孔大小變化之研究
論文名稱(外文):Pectin Methylesterase 34, Contributing to Regulation of Stomatal Movement, is Required for Heat Stress Response in Arabidopsis
指導教授:靳宗洛靳宗洛引用關係
指導教授(外文):Tsung-Luo Jinn
口試委員:林秋榮鄭石通李昆達張孟基
口試日期:2015-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:79
中文關鍵詞:阿拉伯芥果膠甲基酯化酶後天耐熱性葉溫失水氣孔
外文關鍵詞:Arabidopsis thalianaPectin methylesteraseThermotoleranceHeat ShockLeaf temperatureWater lossGuard cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
果膠是植物初級細胞壁的主要成份之一,在高基氏體中形成,並以高度甲基酯化的形態被送至細胞壁中。在細胞壁中的果膠會受到甲基酯化酶 (PME) 的作用,去除所擁有的甲基酯結構。根據研究,甲基酯化酶在植物生長以及抗蟲害機制中扮演著重要的角色,但是在植物耐熱機制中所扮演的角色卻少有研究。我們以53個阿拉伯芥PME的T-DNA插入突變株進行耐熱性狀測試,發現二個PME34 (At3g49220) 相同基因座的突變株皆出現存活率下降的性狀。經過實驗後發現,PME34基因的受損並不會影響到熱休克蛋白基因的表現量,同時PME34的轉錄會受到ABA的誘導,並會在保衛細胞中會大量表現。所以我們推斷,PME34的突變會使得植株失去控制氣孔開關的能力,導致植株出現不耐熱的性狀。因此、在阿拉伯芥熱休克反應機制當中,PME34會藉由本身的酵素功能改變保衛細胞的細胞壁結構,影響細胞壁的彈性,從而改變氣孔的孔徑大小以調節蒸散作用的速率達到散熱的效果,增加植株對熱休克的耐受性。

Pectin, a major component of the primary cell wall, is synthesized in the Golgi apparatus and exported to the cell wall in a highly methylesterified form, then de-methylesterified by pectin methylesterase (PME). The effect of PME on the pectin methylesterification status plays a key role in plant development and plant–pathogen interactions, but its role under heat stress (HS) was poorly studied. Thermotolerance assay of Arabidopsis 53 PME homologous-T-DNA insertion lines revealed 2 null-mutant alleles of PME34 (At3g49220) both consistently showed reduced thermotolerance; nevertheless their impairment was independently associated with the expression of HS-related genes. PME34 transcript induction depended on abscisic acid and was highly expressed in guard cells. We showed PME34 mutation has a defect in the control of stomatal movement resulted in a heat-sensitive phenotype. Hence, PME34 has a role in the regulation of transpiration by controlling the degree of stomatal aperture that was achieved by enzymatic actives during HS response. PME34 is required for regulating guard cell-wall flexibility to mediate HS tolerance in Arabidopsis.

摘要 1
Abstract 2
Abbreviations 3
Chapter 1 Introduction 4
1.1 Pectin Structure and Biosynthesis 4
1.2 Heat Shock Response 6
1.3 Pectin methylesterase 8
1.4 Purpose for this Research 12
Chapter 2 Materials and Methods 14
2.1 Plant Materials and Growth Conditions 14
2.2 Leaf Surface Temperature Measurement 14
2.3 Water Loss Measurement 15
2.4 Stomatal Aperture Measurement 15
2.5 Constructs 15
2.6 Protoplast Preparation, Transfection and Protease Treatment 16
2.7 Subcellular Localization in Onion Epidermal Cells 16
2.8 Drought Experiment and Pigment Content Determination 17
2.9 RNA Isolation, cDNA Synthesis and Real-Time Quantitative PCR (qRT-PCR) 17
2.10 HSPs Quantitation 18
2.11 Stomatal Density and Vein Pattern Analysis 18
Chapter 3 Results 19
3.1 Leaf Surface Temperature Measurement 19
3.2 Water Loss Measurement and Stomatal Aperture Measurement 19
3.3 PME34 Promoter::GUS Assay and Photosynthesis Pigment Content Determination 21
3.4 PME34 Expression Level in ABA-Related Mutants 21
3.5 HS-related Genes Expression in Response to Heat Shock in pme34 22
3.6 Membrane Topology of PME34 22
3.7 Stomatal Density and Cotyledon Vein Pattern 24
Chapter 4 Discussion 25
4.1 PME34 Contributes to the Control of Stomatal Movement 25
4.2 PME34 Specifically Expressed in the Vascular Tissues and Guard Cells 28
4.3 Drought Experiment and Pigment Content Determination 28
4.4 PME34 Expression Level Is Regulated by ABA 29
4.5 HS-related Genes Expression in Response to HS in pme34 29
4.6 The C-terminal PME Activity Domain Is Localized in the Extracellular Space 30
4.7 PME34 Has No Effect on Stomatal Density and Cotyledon Vein Networks 31
Chapter 5 Conclusions and Prospects 33
Figures 35
References 47
Supplemental Data 55
Appendix 68



Al-Whaibi, M.H. (2011). Plant heat-shock proteins: A mini review. Journal of King Saud University - Science 23, 139-150.
Alexandrov, V. (1994). Functional aspects of cell response to heat shock. International Review of Cytology 148, 171-227.
Arioli, T., Peng, L., Betzner, A.S., Burn, J., Wittke, W., Herth, W., Camilleri, C., Höfte, H., Plazinski, J., Birch, R., Cork, A., Glover, J., Redmond, J., and Williamson, R.E. (1998). Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279, 717-720.
Atkinson, R.G., Schroder, R., Hallett, I.C., Cohen, D., and MacRae, E.A. (2002). Overexpression of polygalacturonase in transgenic apple trees leads to a range of novel phenotypes involving changes in cell adhesion. Plant Physiology 129, 122-133.
Baron, K.N., Schroeder, D.F., and Stasolla, C. (2012). Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Science 188, 48-59.
Bosch, M., and Hepler, P.K. (2006). Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. Planta 223, 736-745.
Bosch, M., Cheung, A.Y., and Hepler, P.K. (2005). Pectin methylesterase, a regulator of pollen tube growth. Plant Physiology 138, 1334-1346.
Caffall, K.H., and Mohnen, D. (2009). The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research 344, 1879-1900.
Camardella, L., Carratore, V., Ciardiello, M.A., Servillo, L., Balestrieri, C., and Giovane, A. (2000). Kiwi protein inhibitor of pectin methylesterase amino-acid sequence and structural importance of two disulfide bridges. European Journal of Biochemistry 267, 4561-4565.
Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Research 37, D233-D238.
Carrington, J.C., Freed, D.D., and Oh, C.S. (1990). Expression of potyviral polyproteins in transgenic plants reveals three proteolytic activities required for complete processing. The EMBO Journal 9, 1347-1353.
Charng, Y.-Y., Liu, H.-C., Liu, N.-Y., Chi, W.-T., Wang, C.-N., Chang, S.-H., and Wang, T.-T. (2007). A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology 143, 251-262.
Chen, Y.-A., Wen, Y.-C., and Chang, W.-C. (2012). AtPAN: an integrated system for reconstructing transcriptional regulatory networks in Arabidopsis thaliana. BMC Genomics 13, 85.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16, 735-743.
Colom, M.R., and Vazzana, C. (2003). Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Environmental and Experimental Botany 49, 135-144.
Cosgrove, D.J. (2005). Growth of the plant cell wall. Nature Reviews Molecular Cell Biology 6, 850-861.
Cote, F., Ham, K.S., Hahn, M.G., and Bergmann, C.W. (1998). Oligosaccharide elicitors in host-pathogen interactions. Generation, perception, and signal transduction. Subcellular Biochemistry 29, 385-432.
Deyholos, M.K., Cordner, G., Beebe, D., and Sieburth, L.E. (2000). The SCARFACE gene is required for cotyledon and leaf vein patterning. Development 127, 3205-3213.
Downie, B., Dirk, L.M.A., Hadfield, K.A., Wilkins, T.A., Bennett, A.B., and Bradford, K.J. (1998). A gel diffusion assay for quantification of pectin methylesterase activity. Analytical Biochemistry 264, 149-157.
Elsner, J., Michalski, M., and Kwiatkowska, D. (2012). Spatiotemporal variation of leaf epidermal cell growth: a quantitative analysis of Arabidopsis thaliana wild-type and triple cyclinD3 mutant plants. Annals of Botany 109, 897-910.
Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M.M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2005). AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17, 3470-3488.
Gimeno-Gilles, C., Lelièvre, E., Viau, L., Malik-Ghulam, M., Ricoult, C., Niebel, A., Leduc, N., and Limami, A.M. (2009). ABA-mediated inhibition of germination is related to the inhibition of genes encoding cell-wall biosynthetic and architecture: modifying enzymes and structural proteins in medicago truncatula embryo axis. Molecular Plant 2, 108-119.
Guan, J.C., Jinn, T.L., Yeh, C.H., Feng, S.P., Chen, Y.M., and Lin, C.Y. (2004). Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Molecular Biology 56, 795-809.
Hamann, T., Bennett, M., Mansfield, J., and Somerville, C. (2009). Identification of cell-wall stress as a hexose-dependent and osmosensitive regulator of plant responses. Plant Journal 57, 1015-1026.
Harholt, J., Suttangkakul, A., and Vibe Scheller, H. (2010). Biosynthesis of pectin. Plant physiology 153, 384-395.
Hewezi, T., Howe, P., Maier, T.R., Hussey, R.S., Mitchum, M.G., Davis, E.L., and Baum, T.J. (2008). Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase: cooperative cell wall modification during parasitism. Plant Cell 20, 3080-3093.
Hong, S.-W., and Vierling, E. (2000). Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proceedings of the National Academy of Sciences of the United States of America 97, 4392-4397.
Hongo, S., Sato, K., Yokoyama, R., and Nishitani, K. (2012). Demethylesterification of the primary wall by pectin methylesterase35 provides mechanical support to the Arabidopsis stem. Plant Cell 24, 2624-2634.
Jones, L., Milne, J.L., Ashford, D., and McQueen-Mason, S.J. (2003). Cell wall arabinan is essential for guard cell function. Proceedings of the National Academy of Sciences of the United States of America 100, 11783-11788.
Karimi, M., Inze, D., and Depicker, A. (2002). GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science 7, 193-195.
Kim, T.H., Bohmer, M., Hu, H., Nishimura, N., and Schroeder, J.I. (2010). Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology 61, 561-591.
Kobayashi, M., Matoh, T., and Azuma, J. (1996). Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiology 110, 1017-1020.
Koizumi, K., Sugiyama, M., and Fukuda, H. (2000). A series of novel mutants of Arabidopsis thaliana that are defective in the formation of continuous vascular network: calling the auxin signal flow canalization hypothesis into question. Development 127, 3197-3204.
Komalavilas, P., and Mort, A.J. (1989). The acetylation of O-3 of galacturonic acid in the rhamnose-rich portion of pectins. Carbohydrate Research 189, 261-272.
Kotak, S., Larkindale, J., Lee, U., von Koskull-Doring, P., Vierling, E., and Scharf, K.D. (2007). Complexity of the heat stress response in plants. Current Opinion in Plant Biology 10, 310-316.
Larkindale, J., Hall, J.D., Knight, M.R., and Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology 138, 882-897.
Lee, S., Choi, H., Suh, S., Doo, I.S., Oh, K.Y., Choi, E.J., Schroeder Taylor, A.T., Low, P.S., and Lee, Y. (1999). Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiology 121, 147-152.
Liang, Y.K., Xie, X., Lindsay, S.E., Wang, Y.B., Masle, J., Williamson, L., Leyser, O., and Hetherington, A.M. (2010). Cell wall composition contributes to the control of transpiration efficiency in Arabidopsis thaliana. Plant Journal 64, 679-686.
Liners, F., Letesson, J.J., Didembourg, C., and Van Cutsem, P. (1989). Monoclonal antibodies against pectin: recognition of a conformation induced by calcium. Plant Physiology 91, 1419-1424.
Liu, H.C., Liao, H.T., and Charng, Y.Y. (2011). The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant, Cell & Environment 34, 738-751.
Lorenz, H., Hailey, D., and Lippincott-Schwartz, J. (2008). Addressing Membrane Protein Topology Using the Fluorescence Protease Protection (FPP) Assay. In Exocytosis and Endocytosis, A. Ivanov, ed (Humana Press), pp. 227-233.
Lurie, S. (1998). Postharvest heat treatments. Postharvest Biology and Technology 14, 257-269.
Lurie, S., and Klein, J.D. (1992). Calcium and heat treatments to improve storability of `Anna'' apples. HortScience 27, 36-39.
Mancinelli, A.L., Yang, C.P., Lindquist, P., Anderson, O.R., and Rabino, I. (1975). Photocontrol of anthocyanin synthesis: III. The action of streptomycin on the synthesis of chlorophyll and anthocyanin. Plant Physiology 55, 251-257.
Markovic, O., and Janecek, S. (2004). Pectin methylesterases: sequence-structural features and phylogenetic relationships. Carbohydrate Research 339, 2281-2295.
McMillan, G.P., and Pérombelon, M.C.M. (1995). Purification and characterization of a high pl pectin methyl esterase isoenzyme and its inhibitor from tubers of Solanum tuberosum subsp. tuberosum cv. Katahdin. Physiological and Molecular Plant Pathology 46, 413-427.
Micheli, F. (2001). Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends in Plant Science 6, 414-419.
Mohnen, D. (1999). Biosynthesis of pectins and galactomannans. In BM Pinto, ed, Comprehensive Natural Products Chemistry- Carbohydrates and Their Derivatives Including Tannins, Cellulose, and Related Lignins 3, 497-527.
Mohnen, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology 11, 266-277.
Muller, K., Levesque-Tremblay, G., Bartels, S., Weitbrecht, K., Wormit, A., Usadel, B., Haughn, G., and Kermode, A.R. (2013). Demethylesterification of cell wall pectins in Arabidopsis plays a role in seed germination. Plant Physiology 161, 305-316.
Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15, 473-497.
Nothnagel, E.A., McNeil, M., Albersheim, P., and Dell, A. (1983). Host-pathogen interactions : XXII. A aalacturonic acid oligosaccharide from plant cell walls elicits phytoalexins. Plant Physiology 71, 916-926.
Pear, J.R., Kawagoe, Y., Schreckengost, W.E., Delmer, D.P., and Stalker, D.M. (1996). Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proceedings of the National Academy of Sciences of the United States of America 93, 12637-12642.
Pelloux, J., Rusterucci, C., and Mellerowicz, E.J. (2007). New insights into pectin methylesterase structure and function. Trends in Plant Science 12, 267-277.
Porra, R.J., Thompson, W.A., and Kriedemann, P.E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA) - Bioenergetics 975, 384-394.
Qu, T., Liu, R., Wang, W., An, L., Chen, T., Liu, G., and Zhao, Z. (2011). Brassinosteroids regulate pectin methylesterase activity and AtPME41 expression in Arabidopsis under chilling stress. Cryobiology 63, 111-117.
Ren, C., and Kermode, A.R. (2000). An increase in pectin methyl esterase activity accompanies dormancy breakage and germination of yellow cedar seeds. Plant Physiology 124, 231-242.
Ridley, B.L., O''Neill, M.A., and Mohnen, D. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57, 929-967.
Roschzttardtz, H., Paez-Valencia, J., Dittakavi, T., Jali, S., Reyes, F.C., Baisa, G., Anne, P., Gissot, L., Palauqui, J.-C., Masson, P.H., Bednarek, S.Y., and Otegui, M.S. (2014). The Vasculature complexity and connectivity gene encodes a plant-specific protein required for embryo provasculature development. Plant Physiology 166, 889-902.
Scarpella, E., Simons, E.J., and Meijer, A.H. (2005). Multiple regulatory elements contribute to the vascular-specific expression of the rice HD-Zip gene Oshox1 in Arabidopsis. Plant and Cell Physiology 46, 1400-1410.
Schöffl F, Prändl R, and A., R. (1998). Regulation of the heat-shock response. Plant Physiology 117, 1135-1141.
Scheller, H.V., and Ulvskov, P. (2010). Hemicelluloses. Annual Review of Plant Biology 61, 263-289.
Schmohl, N., Pilling, J., Fisahn, J., and Horst, W.J. (2000). Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum. Physiologia Plantarum 109, 419-427.
Sieburth, L.E. (1999). Auxin Is required for leaf vein pattern in Arabidopsis. Plant Physiology 121, 1179-1190.
Vicente, A.R., Costa, M.L., Martínez, G.A., Chaves, A.R., and Civello, P.M. (2005). Effect of heat treatments on cell wall degradation and softening in strawberry fruit. Postharvest Biology and Technology 38, 213-222.
Vincken, J., Schols, H.A., Oomen, R.J., McCann, M.C., Ulvskov, P., Voragen, A.G., and Visser, R.G. (2003). If homogalacturonan were a sede chain of rhamnogalacturonan I. implications for cell wall architecture. Plant Physiology 132, 1781-1789.
Wakabayashi, K., Chun, J.-P., and Huber, D.J. (2000). Extensive solubilization and depolymerization of cell wall polysaccharides during avocado (Perseaamericana) ripening involves concerted action of polygalacturonase and pectinmethylesterase. Physiologia Plantarum 108, 345-352.
Wakabayashi, K., Hoson, T., and Huber, D.J. (2003). Methyl de-esterification as a major factor regulating the extent of pectin depolymerization during fruit ripening: a comparison of the action of avocado (Persea americana) and tomato (Lycopersicon esculentum) polygalacturonases. Journal of Plant Physiology 160, 667-673.
Weigel, D., and Glazebrook, J. (2002). Arabidopsis: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Williams, M.H., and Green, P.B. (1988). Sequential scanning electron microscopy of a growing plant meristem. Protoplasma 147, 77-79.
Wolf, S., Rausch, T., and Greiner, S. (2009a). The N-terminal pro region mediates retention of unprocessed type-I PME in the Golgi apparatus. Plant Journal 58, 361-375.
Wolf, S., Mouille, G., and Pelloux, J. (2009b). Homogalacturonan methyl-esterification and plant development. Molecular Plant 2, 851-860.
Wu, H.C., Hsu, S.F., Luo, D.L., Chen, S.J., Huang, W.D., Lur, H.S., and Jinn, T.L. (2010). Recovery of heat shock-triggered released apoplastic Ca2+ accompanied by pectin methylesterase activity is required for thermotolerance in soybean seedlings. Journal of Experimental Botany 61, 2843-2852.
Xiong, J., Yang, Y., Fu, G., and Tao, L. (2015). Novel roles of hydrogen peroxide (H2O2) in regulating pectin synthesis and demethylesterification in the cell wall of rice (Oryza sativa) root tips. New Phytologist 206, 118-126.
Yang, Y., Costa, A., Leonhardt, N., Siegel, R.S., and Schroeder, J.I. (2008). Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods 4, 6.
Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2, 1565-1572.
Yoshida, T., Ohama, N., Nakajima, J., Kidokoro, S., Mizoi, J., Nakashima, K., Maruyama, K., Kim, J.M., Seki, M., Todaka, D., Osakabe, Y., Sakuma, Y., Schoffl, F., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2011). Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Molecular Genetics and Genomics 286, 321-332.
Zablackis, E., Huang, J., Müller, B., Darvill, A.G., and Albersheim, P. (1995). Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiology 107, 1129-1138.
Zandleven, J., Sorensen, S.O., Harholt, J., Beldman, G., Schols, H.A., Scheller, H.V., and Voragen, A.J. (2007). Xylogalacturonan exists in cell walls from various tissues of Arabidopsis thaliana. Phytochemistry 68, 1219-1226.
Zhang, X.Q., Wei, P.C., Xiong, Y.M., Yang, Y., Chen, J., and Wang, X.C. (2011). Overexpression of the Arabidopsis alpha-expansin gene AtEXPA1 accelerates stomatal opening by decreasing the volumetric elastic modulus. Plant Cell Reports 30, 27-36.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top