跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 14:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳映柔
研究生(外文):Ying-Jou Wu
論文名稱:部分發酵茶製程揮發性有機化合物生合成之轉錄體研究
論文名稱(外文):Transcriptome Study on Biosynthesis of Volatile Organic Compounds During Manufacturing Process of Semi-fermented Tea
指導教授:許輔許輔引用關係
指導教授(外文):Fuu Sheu
口試委員:陳右人周志輝潘敏雄繆希椿
口試日期:2015-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:83
中文關鍵詞:部分發酵茶揮發性有機化合物核醣核酸定序分析萜類生合成途徑β-櫻草糖苷酶
外文關鍵詞:Camellia sinensissemi-fermented teavolatile organic compoundsRNA sequencingterpene biosynthesis pathwayβ-primeverosidase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:368
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
茶樹 (Camellia sinensis (L.) O. Kuntze) 是具經濟價值的飲料作物,在全世界廣為飲用。部分發酵茶是台灣的重要茶類,製造過程包括採菁、日光萎凋、室內萎凋、炒菁、揉捻與乾燥,適當的發酵賦予部分發酵茶特殊的花香與果香,而香氣更是影響茶葉品質與特色的關鍵因素。為了瞭解茶葉中與揮發性有機化合物生合成相關的酵素,及其在製造過程中的變化,於茶菁採收前及製茶過程中的六個時間點進行採樣,以次世代核醣核酸定序分析技術進行轉錄體定序。於全新序列組裝後,共得到 222,087 條鄰接序列 (contig),與已知基因序列比對後,其中 29% 完成基因名稱、開放讀框 (open reading frame) 與基因本體註解 (Gene Ontology term)。接著去除重複性序列,得到 20,137 條已註解的特定基因 (unigene),其中共有 1,237 個基因於製茶過程中具差異表達,18 個特定基因註解到參與揮發性萜類、脂肪酸與β-胡蘿蔔素衍生揮發性化合物之生合成相關酵素,而乙醇脫氫酶 (alcohol dehydrogenase) 為茶葉製程前期相對基因表現量提升最多的基因。由本研究結果,我們提出了茶葉製造過程中可能的揮發性萜類生合成途徑。另一方面,由於β-櫻草糖苷 (β-primeveroside) 是茶葉中糖苷鍵結之揮發性物質前驅物存在的主要形式,故搭配次世代定序結果進行β-櫻草糖苷酶 (β-primeverosidase) 基因序列之選殖與大腸桿菌異體表現,未來能進一步純化,具有以外源酵素的方式於茶葉製程增進香氣表現之潛力。綜合以上結果,本研究提供了製茶過程中,與茶葉香氣物質生合成相關的基因表現變化,及有助於提升茶葉香氣之方法。

Tea plant (Camellia sinensis (L.) O. Kuntze) is a beverage crop, with great economic value and is consumed worldwide, in which semi-fermented oolong tea is an important feature of teas in Taiwan. The particular manufacturing process of semi-fermented tea involves plucking, solar withering, indoor withering, panning, rolling and drying, gives the tea a unique floral and fruity aroma that affects the quality and character of tea. To identify enzymes related to volatile organic compounds biosynthesis and their expression profiles during early stages of tea manufacturing process, transcriptome of tea shoots from six sampling points were sequenced using next generation RNA sequencing technology. After de novo assembly, a total of 222,087 contigs were aligned with known sequences. 29% of the contigs were annotated with gene name, open reading frame, and Gene Ontology terms. After reducing redundancy, 20,137 unigenes were obtained, with 1,237 unigenes differentially expressed during tea manufacturing process. There were 18 unigenes annotated to enzymes involved in the biosynthesis of volatile terpenes, volatile fatty acid derivatives and carotenoid derivatives. Alcohol dehydrogenase was the most up-regeleted gene during early stage of tea processing, and putative volatile terpene biosynthesis pathway in C. sinenesis was proposed. On the other hand, since β-primeverosides are the major forms of glycosidically bound volatiles precursors in tea, the sequence of β-primeverosidase was cloned with primers from RNA-seq results and expressed with E. coli, which can further be purified and had a potential to use as exogenous enzyme for aroma enhancement. This study provided novel insight into tea volatiles with the expression profile of related genes during manufacturing process, as well as potential approach to improve tea flavors.

口試委員會審定書………i
誌謝………ii
摘要………iii
ABSTRACT………iv
CONTENT vi
LIST OF TABLES………viii
LIST OF FIGURES………ix
CHAPTER 1 INTRODUCTION………1
1.1 Introductory of Camellia sinensis and tea………1
1.2 The development of next generation sequencing technology ………3
1.3 Application of next generation sequencing in transcriptome studies………4
1.4 Transcriptome study of Camellia sinensis......... 6
1.5 Volatile organic compounds in Camellia sinensis………8
1.6 β-primeverosidase in Camellia sinensis………10
1.7 The aim of this study………11
CHAPTER 2 MATERIALS AND METHODS………13
2.1 Chemicals and reagents………13
2.2 Plant material and sampling……….13
2.3 Total RNA purification for transcriptome sequencing………14
2.4 Next generation sequencing and de novo assembly………14
2.5 Functional annotation of de novo assembled contigs………15
2.6 Gene expression analysis………16
2.7 Cloning of tea fresh shoot β-primeverosidase………16
2.8 Heterologous expression and purification of β-primeverosidase………18
2.9 Electrophoresis and Western blot analysis………19
CHAPTER 3 RESULTS………21
3.1 Sequencing and assembly of Camellia sinensis transcriptome………21
3.2 Gene identification and annotation………22
3.3 Differential gene expression during tea manufacturing………23
3.4 Volatile organic compounds biosynthesis related enzymes in C. sinenesis………25
3.5 Cloning and heterologous expression of β-primeverosidase………27
CHAPTER 4 DISCUSSION………29
4.1 Establishment of Camellia sinensis transcriptome database………29
4.2 Overview of differentially expressed genes during tea manufacturing………30
4.3 Genes involved in the biosynthesis of tea volatiles………31
4.4 The application value of β-primeverosidase cloning and expression………33
4.5 Conclusion ………36
REFERENCES………37
TABLES………49
FIGURES………53
APPENDIX………71


Alagna, F., D’Agostino, N., Torchia, L., Servili, M., Rao, R., Pietrella, M., Giuliano, G., Chiusano, M.L., Baldoni, L. and Perrotta, G. 2009. Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genomics 10:399.
Angeloni, F., Wagemaker, C.A.M., Jetten, M.S.M., Op den Camp, H.J.M., Janssen-Megens, E.M., Francoijs, K.J., Stunnenberg, H.G. and Ouborg, N.J. 2011. De novo transcriptome characterization and development of genomic tools for Scabiosa columbaria L. using next-generation sequencing techniques. Mol. Ecol. Resour. 11:662-674.
Aryan, A.P., Wilson, B., Strauss, C.R. and Williams, P.J. 1987. The properties of glycosidases of Vitis vinifera and a comparison of their β-glucosidase activity with that of exogenous enzymes. An assessment of possible applications in enology. Amer. J. Enol. Vitic. 38:182-188.
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M. and Sherlock, G. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25:25-29.
Axtell, M.J., Snyder, J.A. and Bartel, D.P. 2007. Common functions for diverse small RNAs of land plants. Plant Cell 19:1750-1769.
Balentine, D.A., Wiseman, S.A. and Bouwens, L.C. 1997. The chemistry of tea flavonoids. Crit. Rev. Food Sci. Nutr. 37:693-704.
Bansal, S., Choudhary, S., Sharma, M., Kumar, S.S., Lohan, S., Bhardwaj, V., Syan, N. and Jyoti, S. 2013. Tea: A native source of antimicrobial agents. Food Res. Int. 53:568-584.
Bell, E., Creelman, R.A. and Mullet, J.E. 1995. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 92:8675-8679.
Cho, J.Y., Mizutani, M., Shimizu, B., Kinoshita, T., Ogura, M., Tokoro, K., Lin, M.L. and Sakata, K. 2007. Chemical profiling and gene expression profiling during the manufacturing process of Taiwan oolong tea “Oriental Beauty”. Biosci. Biotechnol. Biochem. 71:1476-1486.
Cho, Y.S., Schiller, N.L., Kahng, H.Y. and Oh, K.H. 2007. Cellular responses and proteomic analysis of Escherichia coli exposed to green tea polyphenols. Curr. Microbiol. 55:501-506.
Conesa, A., Gotz, S., Garcia-Gomez, J.M., Terol, J., Talon, M. and Robles, M. 2005. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674-3676.
Egan, A.N., Schlueter, J. and Spooner, D.M. 2012. Applications of next-generation sequencing in plant biology. Amer. J. Bot. 99:175-185.
Eveland, A.L., McCarty, D.R. and Koch, K.E. 2008. Transcript profiling by 3’-untranslated region sequencing resolves expression of gene families. Plant Physiol. 146:32-44.
Felfe, C., Schemainda, M., Baldermann, S., Watanabe, N. and Fleischmann, P. 2011. Metabolism of carotenoid degradation in leaves of Camellia sinensis-Functional and biochemical modifications. J. Food Compos. Anal. 24:821-825.
Frei, B. and Higdon, J.V. 2003. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J. Nutr. 133:3275S-3284S.
Fu, J. 2013. Molecular cloning and expression analysis of a putative sesquiterpene synthase gene from tea plant (Camellia sinensis). Acta Physiol Plant 35:289-293.
Gohain, B., Borchetia, S., Bhorali, P., Agarwal, N., Bhuyan, L.P., Ravindranath, R., Rahman, A., Gurusubramaniam, G., Sakata, K., Mizutani, M., Shimizu, B., Kalita, M.C., Hazarika, M. and Das, S. 2012. Understanding Darjeeling tea flavour on a molecular basis. Plant Mol. Biol. 78:577-597.
Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N. and Regev, A. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29:644-652.
Gradisar, H., Pristovsek, P., Plaper, A. and Jerala, R. 2007. Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site. J. Med. Chem. 50:264-271.
Guo, W., Yamauchi, K., Watanabe, N., Usui, T., Luo, S. and Sakata, K. 1995. A primeverosidase as a main glycosidase concerned with the alcoholic aroma formation in tea leaves. Biosci. Biotechnol. Biochem. 59:962-964.
Gupta, S., Hastak, K., Ahmad, N., Lewin, J.S. and Mukhtar, H. 2001. Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc. Natl. Acad. Sci. U. S. A. 98:10350-10355.
Ho, C.K., Choi, S., Siu, P.M. and Benzie, I.F.F. 2014. Effects of single dose and regular intake of green tea (Camellia sinensis) on DNA damage, DNA repair, and heme oxygenase-1 expression in a randomized controlled human supplementation study. Mol. Nutr. Food Res. 58:1379-1383.
Inami, S., Takano, M., Yamamoto, M., Murakami, D., Tajika, K., Yodogawa, K., Yokoyama, S., Ohno, N., Ohba, T., Sano, J., Ibuki, C., Seino, Y. and Mizuno, K. 2007. Tea catechin consumption reduces circulating oxidized low-density lipoprotein. Int. Heart J. 48:725-732.
Ijima, Y., Ogawa, K., Watanabe, N., Usui, T., Ohnishi-Kameyama, M., Nagata, T. and Sakata, K. 1998. Characterization of β-primeverosidase, being concerned with alcoholic aroma formation in tea leaves to be processed into black tea, and preliminary observations on its substrate specificity. J. Agric. Food Chem. 46:1712-1718.
Jang, J., Yang, Y.C., Zhang, G.H., Chen, H., Lu, J.L., Du, Y.Y., Ye, J.H., Ye, Q., Borthakur, D., Zheng, X.Q. and Liang, Y.R. 2010. Effect of ultra-violet B on release of volatiles in tea leaf. Int. J. Food Prop. 13:608-617.
Kaur, S., Greaves, P., Cooke, D.N., Edwards, R., Steward, W.P., Gescher, A.J. and Marczylo, T.H. 2007. Breast cancer prevention by green tea catechins and black tea theaflavins in the C3(1) SV40 T, t antigen transgenic mouse model is accompanied by increased apoptosis and a decrease in oxidative DNA adducts. J. Agric. Food Chem. 55:3378-3385.
Kumazawa, K. and Masuda, H. 1999. Identification of potent odorants in Japanese green tea (Sen-cha). J. Agric. Food Chem. 47:5169-5172.
Lambert, J.D. and Elias, R.J. 2010. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch. Biochem. Biophys. 501:65-72.
Landau, J. 1998. Inhibition of spontaneous formation of lung tumors and rhabdomyosarcomas in A/J mice by black and green tea. Carcinogenesis 19:501-507.
Langmead, B. and Salzberg, S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357-359.
Lin, S.Y. 2013. Study on variations of soluble chemical components and volatile organic compounds in tea shoots and during manufacturing process of semi-fermented tea. Department of Horticulture and Landscape Architecture at National Taiwan University. Doctor Thesis.
Lister, R., O’Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., Millar, A.H. and Ecker, J.R. 2008. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523-536.
Liu, L.Y.D., Tseng, H.I., Lin, C.P., Lin, Y.Y., Huang, Y.H., Huang, C.K., Chang, T.H. and Lin, S.S. 2014. High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches’-broom phytoplasma infection. Plant Cell Physiol. 55:942-957.
Liu, S. and Han, B. 2010. Differential expression pattern of an acidic 9/13-lipoxygenase in flower opening and senescence and in leaf response to phloem feeders in the tea plant. BMC Plant Biol. 10:228.
Longo, M.A. and Sanroman, M.A. 2006. Production of food aroma compounds: Microbial and enzymatic methodologies. Food Technol. Biotechnol. 44:335-353.
Love, M.I., Huber, W. and Anders, S. 2014. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 15:550.
Ma, C.L., Chen, L., Wang, X.C., Jin, J.Q., Ma, J.Q., Yao, M.Z. and Wang, Z.L. 2012. Differential expression analysis of different albescent stages of “Anji Baicha” (Camellia sinensis (L.) O. Kuntze) using cDNA microarray. Sci. Hortic. 148:246-254.
Ma, S.J., Mizutani, M., Hiratake, J., Hayashi, K., Yagi, K., Watanabe, N. and Sakata, K. 2001. Substrate specificity of β-primeverosidase, a key enzyme in aroma formation during oolong tea and black tea manufacturing. Biosci. Biotechnol. Biochem. 65:2719-2729.
Metzker, M.L. 2010. Sequencing technologies - the next generation. Nat. Rev. Genet. 11:31-46.
Meyerson, M., Gabriel, S. and Getz, G. 2010. Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet. 11:685-696.
Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P., Lee, W., Mendenhall, E., O''Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E.S. and Bernstein, B.E. 2007. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553-560.
Mizrachi, E., Hefer, C.A., Ranik, M., Joubert, F. and Myburg, A.A. 2010. De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq. BMC Genomics 11:681.
Mizutani, M., Nakanishi, H., Ema, J., Ma, S.J., Noguchi, E., Inohara-Ochiai, M., Fukuchi-Mizutani, M., Nakao, M. and Sakata, K. 2002. Cloning of β-primeverosidase from tea leaves, a key enzyme in tea aroma formation. Plant Physiol. 130:2164-2176.
Morozova, O., Hirst, M. and Marra, M.A. 2009. Applications of new sequencing technologies for transcriptome analysis. Annu. Rev. Genomics Hum. Genet. 10:135-151.
Murase, T., Nagasawa, A., Suzuki, J., Hase, T. and Tokimitsu, I. 2002. Beneficial effects of tea catechins on diet-induced obesity: stimulation of lipid catabolism in the liver. Int. J. Obes. Relat. Metab. Disord. 26:1459-1464.
Ogawa, K., Ijima, Y., Guo, W., Watanabe, N., Usui, T., Dong, S., Tong, Q. and Sakata, K. 1997. Purification of a β-primeverosidase concerned with alcoholic aroma formation in tea leaves (cv. Shuixian) to be processed to oolong tea. J. Agric. Food Chem. 45:877-882.
Ohlrogge, J. and Benning, C. 2000. Unraveling plant metabolism by EST analysis. Curr. Opin. Plant Bio. 3:224-228.
Ozsolak, F. and Milos, P.M. 2011. RNA sequencing: advances, challenges and opportunities. Nat. Rev. Genet. 12:87-98.
Panagiotakos, D.B., Lionis, C., Zeimbekis, A., Gelastopoulou, K., Papairakleous, N., Das, U.N. and Polychronopoulos, E. 2009. Long-term tea intake is associated with reduced prevalence of (type 2) diabetes mellitus among elderly people from Mediterranean islands: MEDIS epidemiological study. Yonsei Med. J. 50:31-38.
Park, J.S., Kim, J.B., Hahn, B.S., Kim, K.H., Ha, S.H., Kim, J.B. and Kim, Y.H. 2004. EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization. Plant Sci. 166:953-961.
Peters, U., Poole, C. and Arab, L. 2001. Does tea affect cardiovascular disease? A meta-analysis. Amer. J. Epidemiol. 154:495-503.
Plouvier, V. 1980. Study and distribution of primeverosidase and gentiobiosidase. C. R. Ser. D. 290:1071-1074.
Porreca, G.J., Zhang, K., Li, J.B., Xie, B., Austin, D., Vassallo, S.L., LeProust, E.M., Peck, B.J., Emig, C.J., Dahl, F., Gao, Y., Church, G.M. and Shendure, J. 2007. Multiplex amplification of large sets of human exons. Nat. Methods 4:931-936.
Quail, M.A., Smith, M., Coupland, P., Otto, T.D., Harris, S.R., Connor, T.R., Bertoni, A., Swerdlow, H.P. and Gu, Y. 2012. A tale of three next generation sequencing platforms: comparison of ion torrent, pacific biosciences and illumina miseq sequencers. BMC Genomics 13:341.
Rama Reddy, N.R., Mehta, R.H., Soni, P.H., Makasana, J., Gajbhiye, N.A., Ponnuchamy, M. and Kumar, J. 2015. Next generation sequencing and transcriptome analysis predicts biosynthetic pathway of sennosides from senna (Cassia angustifolia Vahl.), a non-model plant with potent laxative properties. PLoS One 10:e0129422.
Reygaert, W.C. 2014. The antimicrobial possibilities of green tea. Front. Microbiol. 5:434.
Riggins, C.W., Peng, Y., Stewart, C.N. and Tranel, P.J. 2010. Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes. Pest Manag. Sci. 66:1042-1052.
Saino, H., Mizutani, M., Hiratake, J. and Sakata, K. 2008. Expression and biochemical characterization of β-primeverosidase and application of β-primeverosylamidine to affinity purification. Biosci. Biotechnol. Biochem. 72:376-383.
Saino, H., Shimizu, T., Hiratake, J., Nakatsu, T., Kato, H., Sakata, K. and Mizutani, M. 2014. Crystal structures of β-primeverosidase in complex with disaccharide amidine inhibitors. J. Biol. Chem. 289:16826-16834.
Sano, J., Inami, S., Seimiya, K., Ohba, T., Sakai, S., Takano, T. and Mizuno, K. 2004. Effects of green tea intake on the development of coronary artery disease. Circ. J. 68:665-670.
Sartippour, M.R., Pietras, R., Marquez-Garban, D.C., Chen, H.W., Heber, D., Henning, S.M., Sartippour, G., Zhang, L., Lu, M., Weinberg, O., Rao, J.Y. and Brooks, M.N. 2006. The combination of green tea and tamoxifen is effective against breast cancer. Carcinogenesis 27:2424-2433.
Schuh, C. and Schieberle, P. 2006. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: Quantitative differences between tea leaves and infusion. J. Agric. Food Chem. 54:916-924.
Schwartz, J.L., Baker, V., Larios, E. and Chung, F.L. 2005. Molecular and cellular effects of green tea on oral cells of smokers: A pilot study. Mol. Nutr. Food Res. 49:43-51.
Shapiro, E., Biezuner, T. and Linnarsson, S. 2013. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14:618-630.
Sharangi, A.B. 2009. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) - A review. Food Res. Int. 42:529-535.
Sharma, R.K., Bhardwaj, P., Negi, R., Mohapatra, T. and Ahuja, P.S. 2009. Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L.). BMC Plant Biol. 9:53.
Shendure, J. and Ji, H. 2008. Next-generation DNA sequencing. Nat. Biotechnol. 26:1135-1145.
Shi, C.Y., Yang, H., Wei, C.L., Yu, O., Zhang, Z.Z., Jiang, C.J., Sun, J., Li, Y.Y., Chen, Q., Xia, T. and Wan, X.C. 2011. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 12:131.
Sogin, M.L., Morrison, H.G., Huber, J.A., Welch, D.M., Huse, S.M., Neal, P.R., Arrieta, J.M. and Herndl, G.J. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. U. S. A. 103:12115-12120.
Stothard, P., Choi, J.W., Basu, U., Sumner-Thomson, J.M., Meng, Y., Liao, X. and Moore, S.S. 2011. Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery. BMC Genomics 12:559.
Strickler, S.R., Bombarely, A. and Mueller, L.A. 2012. Designing a transcriptome next-generation sequencing project for a nonmodel plant species. Amer. J. Bot. 99: 257-266.
Suzuki, Y., Miyoshi, N. and Isemura, M. 2012. Health-promoting effects of green tea. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 88:88-101.
Tanaka, J., Taniguchi, F., Hirai, N. and Yamaguchi, S. 2006. Estimation of the genome size of tea (Camellia sinensis), camellia (C. japonica), and their interspecific hybrids by flow cytometry. Tea Res. J. 101:1-7.
Tijburg, L.B., Mattern, T., Folts, J.D., Weisgerber, U.M. and Katan, M.B. 1997. Tea flavonoids and cardiovascular disease: a review. Crit. Rev. Food Sci. Nutr. 37:771-785.
van Dijk, E.L., Auger, H., Jaszczyszyn, Y. and Thermes, C. 2014. Ten years of next-generation sequencing technology. Trends Genet. 30:418-426.
Venturini, L., Ferrarini, A., Zenoni, S., Tornielli, G.B., Fasoli, M., Dal Santo, S., Minio, A., Buson, G., Tononi, P., Zago, E.D., Zamperin, G., Bellin, D., Pezzotti, M. and Delledonne, M. 2013. De novo transcriptome characterization of Vitis vinifera cv. Corvina unveils varietal diversity. BMC Genomics 14:41.
Wang, D., Yoshimura, T., Kubota, K. and Kobayashi, A. 2000. Analysis of glycosidically bound aroma precursors in tea leaves. 1. Qualitative and quantitative analyses of glycosides with aglycons as aroma compounds. J. Agric. Food Chem. 48:5411-5418.
Wang, D., Kubota, K., Kobayashi, A. and Juan, I.M. 2001a. Analysis of glycosidically bound aroma precursors in tea leaves. 3. Change in the glycoside content of tea leaves during the oolong tea manufacturing process. J. Agric. Food Chem. 49:5391-5396.
Wang, D., Kurasawa, E., Yamaguchi, Y., Kubota, K. and Kobayashi, A. 2001b. Analysis of glycosidically bound aroma precursors in tea leaves. 2. Changes in glycoside contents and glycosidase activities in tea leaves during the black tea manufacturing process. J. Agric. Food Chem. 49:1900-1903.
Wang, L., Wang, X., Yue, C., Cao, H., Zhou, Y. and Yang, Y. 2014. Development of a 44K custom oligo microarray using 454 pyrosequencing data for large-scale gene expression analysis of Camellia sinensis. Sci. Hortic. 174:133-141.
Wang, L.F., Lee, J.Y., Chung, J.O., Baik, J.H., So, S. and Park, S.K. 2008. Discrimination of teas with different degrees of fermentation by SPME-GC analysis of the characteristic volatile flavour compounds. Food Chem. 109:196-206.
Wang, X.C., Zhao, Q.Y., Ma, C.L., Zhang, Z.H., Cao, H.L., Kong, Y.M., Yue, C., Hao, X.Y., Chen, L., Ma, J.Q., Jin, J.Q., Li, X. and Yang, Y.J. 2013. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14:415.
Wang, Z., Gerstein, M. and Snyder, M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57-63.
Wheeler, D.A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen, Y.J., Makhijani, V., Roth, G.T., Gomes, X., Tartaro, K., Niazi, F., Turcotte, C.L., Irzyk, G.P., Lupski, J.R., Chinault, C., Song, X.Z., Liu, Y., Yuan, Y., Nazareth, L., Qin, X., Muzny, D.M., Margulies, M., Weinstock, G.M., Gibbs, R.A. and Rothberg, J.M. 2008. The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872-876.
Wilhelm, B.T., Marguerat, S., Watt, S., Schubert, F., Wood, V., Goodhead, I., Penkett, C.J., Rogers, J. and Bahler, J. 2008. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239-1243.
Wu, H.L., Chen, D., Li, J.X., Yu, B., Qiao, X.Y., Huang, H.L. and He, Y.M. 2013. De novo characterization of leaf transcriptome using 454 sequencing and development of EST-SSR markers in tea (Camellia sinensis). Plant Mol. Biol. Rep. 31:524-538.
Wu, Z.J., Li, X.H., Liu, Z.W., Xu, Z.S. and Zhuang, J. 2014. De novo assembly and transcriptome characterization: novel insights into catechins biosynthesis in Camellia sinensis. BMC Plant Biol. 14:277.
Yang, C.S., Wang, X., Lu, G. and Picinich, S.C. 2009. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer 9:429-439.
Yang, Z., Baldermann, S. and Watanabe, N. 2013. Recent studies of the volatile compounds in tea. Food Res. Int. 53:585-599.
Yeager, M., Xiao, N., Hayes, R.B., Bouffard, P.P., Desany, B., Burdett, L., Orr, N., Matthews, C., Qi, L., Crenshaw, A., Markovic, Z., Fredrikson, K.M., Jacobs, K.B., Amundadottir, L., Jarvie, T.P., Hunter, D.J., Hoover, R., Thomas, G., Harkins, T.T. and Chanock, S.J. 2008. Comprehensive resequence analysis of a 136 kb region of human chromosome 8q24 associated with prostate and colon cancers. Hum. Genet. 124:161-170.
Yu, Y., Deng, Y., Lu, B.M., Liu, Y.X., Li, J. and Bao, J.K. 2014. Green tea catechins: A fresh flavor to anticancer therapy. Apoptosis 19:1-18.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top