跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/30 05:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王逸婷
研究生(外文):Yi-Ting Wang
論文名稱:不同處理條件對葡萄柚汁及文旦柚汁苦味物含量與品質影響
論文名稱(外文):Effects of Different Processing Methods on the Bitterness and Quality of Grapefruit Juice and Buntan Shaddock Juice
指導教授:徐源泰徐源泰引用關係
指導教授(外文):Yuan-Tay Shyu
口試委員:曾文聖劉育姍王鐘毅吳思節
口試日期:2015-07-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:91
中文關鍵詞:柑橘果汁溫湯高壓技術去苦味柚苦苷柚苦苷酶
外文關鍵詞:citrus juicehot water diphigh pressure processingdebitteringnaringinnaringinase
相關次數:
  • 被引用被引用:1
  • 點閱點閱:518
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
葡萄柚(Citrus paradis Macfad)及文旦柚(Citrus grandis (L.) Osbeck)均為芸香科(Rutaceae)多年生常綠果樹。因為與生俱來之苦味,不管鮮食或加工均受到商業限制。目前已知葡萄柚及柚類水果中,主要的苦味成分是柚苦苷(Naringin)。因此,如何降低苦味產生是許多柑橘加工產業積極研究的方向。柚類水果中柚苦苷酶是降低苦味的重要酵素,溫度介於45-55℃時,將會達到最高的脫苦效率。在園產品採後的處理加工方法中,溫湯處理溫度與之相符,所以結合溫湯處理與柚苦苷酶的作用溫度條件進行探討。另外,近年來高壓處理(High pressure processing, HPP)已漸漸應用於食品工業上,並發現具有修飾酵素的催化作用及微生物殺菌的效果。
本研究探討溫湯處理、高壓處理與傳統熱處理,對於葡萄柚汁及文旦柚汁中苦味物質柚苦苷含量、果汁風味品質及微生物的影響。溫湯處理的葡萄柚汁柚苦苷含量為937.0-1233.6 mg/L,均高於未處理組825.0 ± 16.6 mg/L。雖然柚苦苷酶作用溫度與溫湯處理相符,但是溫湯處理無法降低苦味物質。另外,經過加熱殺菌處理則是無顯著改變柚苦苷含量802.1 ± 0.9 mg/L。
另一方面,葡萄柚汁經過高壓處理100 MPa、200 MPa、300 MPa及400 MPa可顯著降低苦味物質,柚苦苷含量從851.09 ± 17.00 mg/L分別降低至475.64 ± 42.10 mg/L、468.77 ± 36.88 mg/L、539.43 ± 69.21 mg/L及458.34 ± 39.24 mg/L,又因一般人對於柚苦苷的苦味接受度為500 mg/L,所以經過高壓處理可以有效降低葡萄柚汁苦味物質。另一試驗材料,文旦柚汁柚苦苷含量與葡萄柚汁相似為820.64 ± 19.00 mg/L,但是經過加熱及高壓處理並無顯著變化約為804.3-863.4 mg/L。
再者,部分果汁理化性質受到加熱及高壓處理影響,又以加熱處理對果汁外觀及品質影響較大。不同加工處理對葡萄柚汁及文旦柚汁pH值、可溶性固形物及可滴定酸則是沒有顯著影響。綜合上述,加熱處理及高壓處理輕微改變部分果汁理化性質,而高壓處理更能維持果汁原有品質。
最後,在微生物試驗中,葡萄柚汁及文旦柚汁經過加熱殺菌(TP)均能顯著降低總生菌數,從3.25 log CFU/mL及3.78 log CFU/mL降低至1.34 log CFU/mL及0.85 log CFU/mL。另外,高壓200、300、400、500 MPa在30℃處理30分鐘,總生菌數均小於2.3 log CFU/ml,符合飲料衛生標準。
綜合以上,高壓處理不僅能促進去苦味酵素作用,也能達到殺菌功效,而且能夠維持原有果汁外觀、風味及品質。可應用於未來柑橘果汁降低苦味的食品工業,對於未來柑橘加工產業應用潛能無限。

The grapefruit (Citrus paradis Macfad) and the buntan shaddock (Citrus grandis (L.) Osbeck) are evergreen perennials of the family Rutaceae, they also called pumelo, is one of the four original citrus species. They have some limitations on commercial processing due to their inherent bitterness. The major component causing the bitterness of pumelo is naringin, and one of the research areas of citrus processing industry is to investigate how to reduce the bitterness during food processing. The key enzyme to reducing bitterness in pumelo is the naringinase that has the most efficiency of debittering when the temperature is between 45 to 55℃. In the methods of horticulture production postharvest handling, the working temperature of the hot water dip method matches to the optimal temperature of naringinase. The combination of the hot water dip method and the naringinase at optimal temperatures is an innovative method. Moreover, the high pressure processing has been found to have the ability to modify the catalytic behavior of the enzyme and inactivate microorganisms during food processing.
This study evaluated the effects of the hot water dip (HWD), the high pressure processing (HPP), and the thermo processing (TP) on the quality, the flavor, the naringin content and the microorganisms of grapefruit juices and buntan shaddock juices. The naringin content in grapefruit juice after HWD was 937.0-1233.6 mg/L, and it was higher than the non-processed control (CON) (825.0 ± 16.6 mg/L). Although the temperature of HWD matches to the optimal temperature of the naringinase, the process of HWD cannot reduce the concentration of naringin. Similarly, the TP had no effects to reduce the concentration of naringin in grapefruit juice that is 802.1 ± 0.9 mg/L after TP. On the other hand, the HPP at 100 MPa, 200 MPa, 300 MPa and 400 MPa significant reduced the concentration of naringin in grapefruit juice, from 851.09 ± 17.00 mg/L to 475.64 ± 42.10 mg/L, 468.77 ± 36.88 mg/L, 539.43 ± 69.21 mg/L and 458.34 ± 39.24 mg/L, respectively. The naringin concentration below 500 mg/L that is the bitter taste threshold. The results suggested that HPP can efficiently reduce the naringin content of grapefruit juice. Another test material is buntan shaddock juice, the naringin content in buntan shaddock juice after TP and HPP was 804.3-863.4 mg/L, and it was similar to the non-processed CON (820.64 ± 19.00 mg/L).
Then, some physicochemical properties of juices has changed through TP and HHP. Comparison of TP and HHP, it has a great influence on the appearance and quality of juice after TP. However, there was no significant change in pH, soluble solids and titratable acidity of grapefruit juice and buntan shaddock juice after the TP and the HPP. In such a context, TP and HHP mild affect on physicochemical properties of juices, but the HHP maintained the physicochemical properties of the original juice well.
Finally, the microbiological tests shows that thermally treating the grapefruit juice and buntan shaddock juice to 85 ℃ for 45 s reduced the bacteria population from 3.25 log CFU/mL and 3.78 log CFU/mL to 1.34 log CFU/mL and 0.85 log CFU/mL. Pressurization at 200, 300, 400, 500 MPa, 30℃ for 30 min reduced the population levels below 2.3 log CFU/mL, it conforms with the microbiological criteria of beverages in Taiwan.
In conclusion, HPP not only promote activity of debittering enzyme but also inactivate bacterial cells. This processing maintain the original juice appearance, flavor and quality. It can be used in the future to reduce the bitterness of citrus juice in the food industry, and the potential applications of HPP is unlimit.

中文摘要.............................................I
Abstract...........................................III
目 錄...............................................V
表 目 錄........................................VIII
圖 目 錄..........................................IX
第一章、前言.........................................1
第二章、文獻探討.....................................3
第一節 柑橘類水果簡介...............................3
一、柑橘屬植物分類...................................3
二、葡萄柚介紹.......................................5
三、文旦柚介紹.......................................6
第二節 柑橘苦味物質介紹及代謝路徑..................12
一、黃烷酮配醣體....................................12
二、檸檬苦素類化合物................................12
三、柚苦苷的生合成與代謝機制........................13
四、苦味成分分佈....................................14
五、苦味閾值及接受性 ..............................15
第三節 降低苦味物質方法............................18
一、吸附法..........................................18
二、酵素法..........................................19
第四節 溫湯處理應用................................21
一、溫湯處理介紹....................................21
二、溫湯處理與柚苦苷酶之關係........................21
第五節 高靜水壓原理與應用..........................22
一、高靜水壓介紹....................................22
二、高靜水壓對酵素之影響............................23
第六節 研究動機與目的..............................27
第七節 試驗架構....................................28
第三章、材料與方法..................................31
第一節 試驗材料與設備..............................31
一、實驗材料........................................31
二、試驗藥品........................................31
三、儀器設備........................................32
第二節 試驗處理....................................34
一、溫湯處理........................................34
二、製備葡萄柚汁及文旦柚汁..........................34
三、加熱處理........................................34
四、高壓處理........................................34
第三節 成分分析....................................38
一、柚苦苷含量分析..................................38
二、色澤分析........................................39
三、pH值測定........................................39
四、可溶性固形物測定................................39
五、可滴定酸測定....................................39
六、水溶性蛋白質測定................................40
七、總酚測定........................................40
八、還原糖測定......................................40
九、總生菌數檢驗....................................41
十、大腸桿菌群檢驗..................................42
第四節 統計分析....................................43
第四章、結果與討論..................................44
第一節 溫湯處理對葡萄柚之影響......................44
一、溫湯處理葡萄柚汁苦味含量之變化..................44
二、葡萄柚汁經溫湯處理後一般理化成分分析............49
第二節 高壓處理對葡萄柚汁與文旦柚汁影響............59
一、高壓處理對葡萄柚汁與文旦柚汁苦味物含量之影響....59
二、高壓處理對葡萄柚汁與文旦柚汁一般理化性質之影響..65
三、高壓處理對葡萄柚汁及文旦柚汁微生物之影響........76
第五章、結論........................................81
第六章、參考文獻....................................82


1.方祖達. 1981. 柑橘榨汁機械之引進與改良. 中國園藝 27(4):127-136.
2.王鸿飞、李和生、董明敏、毛涌良、张丹. 2005. 柚皮苷酶对柑橘类果汁脱苦效果的研究. 农业工程学报 20(6):174-177.
3.左安连、毛海舫、李琼、李云霞. 2008. 柑橘类果汁脱苦方法研究综述. 香料香精化妆品 (3):33-39.
4.孙志高、黄学根、焦必宁、王华、郭莉. 2005. 柑桔果实主要苦味成分的分布及橙汁脱苦技术研究. 食品科学 26(6):146-148.
5.林書妍、陳右人. 2006. 台灣原生柑橘之研究及其利用現況. 植物種苗 8(1):1-12.
6.林靜宜、王子慶、廖俊旺、吳明昌. 2005. 檬果汁低溫殺菌加工 Ⅱ. 貯藏期間品質之變化. 中國園藝 51(3):229-240.
7.徐月珠. 2001. 文旦柚果汁之主要苦味成分與其脫苦味之硏究. 國立臺灣大學園藝學研究所學位論文.
8.康有德. 2006. 果樹. 園藝概論. 啟英文化出版社. 台北:425-462.
9.陳秀吉. 1985. 柑橘果實苦味原理. 食品工業. 11(2): 19-21.
10.彭德昌、王銀波. 1995. 有機質肥料不同施肥法對文旦柚品質與產量之影響. 84 年度土壤肥料試驗研究成果報告:36-52.
11.黃阿賢、徐信次、黃光亮、許世弦. 2006. 葡萄柚果實的色澤. 臺灣園藝 52(4):393-400.
12.劉育姍. 2007. 柑橘屬植物親緣關係及分子演化之研究. 臺灣大學園藝學研究所碩士論文:1-190.
13.蔡榮哲. 1985. 臺灣省產柑桔果汁品質之評估及原料成本之預估. 中國園藝 31(2):71-76.
14.簡伯容. 2001. Penicillium decumbens 中 α-L-鼠李糖苷酶去除葡萄柚汁苦味之探討與其基因選殖之硏究. 臺灣大學園藝學研究所碩士論文.
15.簡伯容、徐源泰、楊淑惠. 2003. 利用酵素去除葡萄柚汁苦味之成分. 中華農業研究 52(3):228-237.
16.簡伯容、許輔、徐源泰、顏國欽. 2005. 酵素水解柚苦苷後提高葡萄柚汁之抗氧化能力. 臺灣農業化學與食品科學 43(1):30-37.
17.嚴夢如、翁仁祿. 1995. 台灣農家要覽. 豐年社:662-686.
18.農委會. 2013. 農業統計要覽. 主要農產品種植面積. 2015 年6 月24 日,取自:http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx
19.農委會. 2013. 農業統計要覽. 農林漁牧產品生產值. 2015 年6 月24 日,取自:http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx
20.農委會. 2013。農業統計要覽. 主要農林漁牧產品生產量. 2015 年6 月24 日,取自:http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx
21.Abe, F. 2007. Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: perspectives from piezophysiology. Bioscience, biotechnology, and biochemistry 71(10):2347-2357.
22.Ashoor, S. and J. Zent. 1984. Maillard browning of common amino acids and sugars. Journal of Food Science 49(4):1206-1207.
23.Balasubramaniam, V., D. Farkas, and E. J. Turek. 2008. Preserving foods through high-pressure processing. Food technology.
24.Bar-Peled, M., R. Fluhr, and J. Gressel. 1993. Juvenile-specific localization and accumulation of a rhamnosyltransferase and its bitter flavonoid in foliage, flowers, and young citrus fruits. Plant physiology 103(4):1377-1384.
25.Barkai-Golan, R. and D. Phillips. 1991. Postharvest heat treatment of fresh fruits and vegetables for decay control. Plant Disease 75(11):1085-1089.
26.Bull, M. K., K. Zerdin, E. Howe, D. Goicoechea, P. Paramanandhan, R. Stockman, J. Sellahewa, E. A. Szabo, R. L. Johnson, and C. M. Stewart. 2004. The effect of high pressure processing on the microbial, physical and chemical properties of Valencia and Navel orange juice. Innovative Food Science & Emerging Technologies 5(2):135-149.
27.Chandler, B., J. Kefford, and G. Ziemelis. 1968. Removal of limonin from bitter orange juice. Journal of the Science of Food and Agriculture 19(2):83-86.
28.Chandler, B. V. and R. L. Johnson. 1977. Cellulose acetate as a selective sorbent for limonin in orange juice. Journal of the Science of Food and Agriculture 28(10):875-884.
29.Cheftel, J. C. 1995. Review: High-pressure, microbial inactivation and food preservation/Revision: Alta-presion, inactivacion microbiologica y conservacion de alimentos. Food science and technology international 1(2-3):75-90.
30.Cheong, M. W., S. Q. Liu, W. Zhou, P. Curran, and B. Yu. 2012. Chemical composition and sensory profile of pomelo (Citrus grandis (L.) Osbeck) juice. Food chemistry 135(4):2505-2513.
31.Cook, N. and S. Samman. 1996. Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. The Journal of nutritional biochemistry 7(2):66-76.
32.Davey, M. W., M. V. Montagu, D. Inzé, M. Sanmartin, A. Kanellis, N. Smirnoff, I. J. J. Benzie, J. J. Strain, D. Favell, and J. Fletcher. 2000. Plant L‐ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture 80(7):825-860.
33.Ebel, J., and K. Hahlbrock. 1982. "Biosynthesis." The Flavonoids. Springer US, 641-679.
34.Food and D. Administration. 2000. Kinetics of microbial inactivation for alternative food processing technologies. Institute of Food Technologists.
35.Frydman, A., R. Liberman, D. V. Huhman, M. Carmeli‐Weissberg, M. Sapir‐Mir, R. Ophir, L. W Sumner, and Y. Eyal. 2013. The molecular and enzymatic basis of bitter/non‐bitter flavor of citrus fruit: evolution of branch‐forming rhamnosyltransferases under domestication. The Plant Journal 73(1):166-178.
36.Gattuso, G., D. Barreca, C. Gargiulli, U. Leuzzi, and C. Caristi. 2007. Flavonoid Composition of Citrus Juices. Molecules 12(8):1641.
37.Gonzalez-Aguilar, G., L. Zacarias, M. Mulas, and M. Lafuente. 1997. Temperature and duration of water dips influence chilling injury, decay and polyamine content inFortune''mandarins. Postharvest Biology and Technology 12(1):61-69.
38.Gross, M. and R. Jaenicke. 1994. Proteins under pressure. European Journal of Biochemistry 221(2):617-630.
39.Guadagni, D. G., V. P. Maier, and J. G. Turnbaugh. 1973. Effect of some citrus juice constituents on taste thresholds for limonin and naringin bitterness. Journal of the Science of Food and Agriculture 24(10):1277-1288.
40.Hagen, R., W. Dunlap, and S. Wender. 1966. Seasonal variation of naringin and certain other flavanone glycosides in juice sacs of Texas Ruby Red grapefruit. Journal of Food Science 31(4):542-547.
41.Harborne, J. 1968. Comparative biochemistry of the flavonoids—VII: Correlations between flavonoid pigmentation and systematics in the family Primulaceae. Phytochemistry 7(8):1215-1230.
42.Hasegawa, S., M. A. Berhow, and C. H. Fong. "Analysis of bitter principles in Citrus." Fruit analysis. Springer Berlin Heidelberg, 1995. 59-80.
43.Hasegawa, S., V. A. Pelton, and R. D. Bennett. 1983. Metabolism of limonoids by Arthrobacter globiformis II: basis for a practical means of reducing the limonin content of orange juice by immobilized cells. Journal of Agricultural and Food Chemistry 31(5):1002-1004.
44.Hashinaga, F., H. Ejima, H. Nagahama, and S. Itoo. 1977. Studies on the limonoids in citrus fruits. I. Seasonal changes of limonoid components in Ponkan, Tankan, Early satsuma mandarin and Natsudaidai fruits. Bulletin.
45.Hiremath, N. D. and H. S. Ramaswamy. 2012. High‐pressure destruction kinetics of spoilage and pathogenic microorganisms in mango juice. Journal of Food Processing and Preservation 36(2):113-125.
46.Horowitz, R. M. and B. Gentili. 1969. Taste and structure in phenolic glycosides. Journal of Agricultural and Food Chemistry 17(4):696-700.
47.Johnson, R. L. and B. V. Chandler. 1985. Ion exchange and adsorbent resins for removal of acids and bitter principles from citrus juices. Journal of the Science of Food and Agriculture 36(6):480-484.
48.Kimball, D. 1991. Bitterness in citrus juices. Citrus Processing. Springer. 136-161.
49.Kroyer, G. 1986. The antioxidant activity of citrus fruit peels. Zeitschrift fur Ernahrungswissenschaft 25(1):63-69.
50.Lewinsohn, E., E. Berman, Y. Mazur, and J. Gressel. 1989. (7) Glucosylation and (1–6) Rhamnosylation of exogenous flavanones by undifferentiated Citrus cell cultures. Plant Science 61(1):23-28.
51.Lullien-Pellerin, V. and C. Balny. 2002. High-pressure as a tool to study some proteins’ properties: conformational modification, activity and oligomeric dissociation. Innovative Food Science & Emerging Technologies 3(3):209-221.
52.Macheix, J.-J. and A. Fleuriet. 1990. Fruit phenolics. CRC press.
53.Mohana-Borges, R., J. L. Silva, J. Ruiz-Sanz, and G. de Prat-Gay. 1999. Folding of a pressure-denatured model protein. Proceedings of the National Academy of Sciences 96(14):7888-7893.
54.Mozhaev, V. V., K. Heremans, J. Frank, P. Masson, and C. Balny. 1996. High pressure effects on protein structure and function. Proteins-Structure Function and Genetics 24(1):81-91.
55.Nafussi, B., S. Ben-Yehoshua, V. Rodov, J. Peretz, B. K. Ozer, and G. D''hallewin. 2001. Mode of action of hot-water dip in reducing decay of lemon fruit. Journal of agricultural and food chemistry 49(1):107-113.
56.Ni, H., F. Chen, H. Cai, A. Xiao, Q. You, and Y. Lu. 2012. Characterization and preparation of Aspergillus niger naringinase for debittering citrus juice. Journal of food science 77(1):C1-C7.
57.Northrop, D. B. 2002. Effects of high pressure on enzymatic activity. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1595(1):71-79.
58.Ogawa, H., K. Fukuhisa, Y. Kubo, and H. Fukumoto. 1990. Pressure inactivation of yeasts, molds, and pectinesterase in Satsuma mandarin juice: effects of juice concentration, pH, and organic acids, and comparison with heat sanitation. Agricultural and Biological Chemistry 54(5):1219-1225.
59.Okamoto, M., H. Rikimaru, A. Enomoto, S. Kaminogawa, and K. Yamauchi. 1991. High-pressure proteolytic digestion of food proteins: selective elimination of β-lactoglobulin in bovine milk whey concentrate. Agricultural and biological chemistry 55(5):1253-1257.
60.Parmar, N. 1982. The gastric anti-ulcer activity of naringenin, a specific histidine decarboxylase inhibitor. International journal of tissue reactions 5(4):415-420.
61.Porat, R., D. Pavoncello, J. Peretz, S. Ben-Yehoshua, and S. Lurie. 2000. Effects of various heat treatments on the induction of cold tolerance and on the postharvest qualities of ‘Star Ruby’grapefruit. Postharvest Biology and Technology 18(2):159-165.
62.Pulley, G. N. 1936. Solubility of naringin in water. Industrial & Engineering Chemistry Analytical Edition 8(5):360-360.
63.Puri, M. and U. C. Banerjee. 2000. Production, purification, and characterization of the debittering enzyme naringinase. Biotechnology Advances 18(3):207-217.
64.Ramful, D., T. Bahorun, E. Bourdon, E. Tarnus, and O. I. Aruoma. 2010. Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: potential prophylactic ingredients for functional foods application. Toxicology 278(1):75-87.
65.Ranganna, S., V. Govindarajan, K. Ramana, and J. Kefford. 1983. Citrus fruits—Varieties, chemistry, technology, and quality evaluation. Part II. Chemistry, technology, and quality evaluation. A. Chemistry. Critical Reviews in Food Science & Nutrition 18(4):313-386.
66.Real, H. J. V., A. J. Alfaia, A. R. Calado, and M. H. Ribeiro. 2007. High pressure-temperature effects on enzymatic activity: Naringin bioconversion. Food Chemistry 102(3):565-570.
67.Reuther, W., L. D. Batchelor, and H. J. Webber. 1967. The Citrus Industry. Vol. University of California, Berkeley.
68.Ribeiro, M. H., C. Afonso, H. J. Vila-Real, A. J. Alfaia, and L. Ferreira. 2010. Contribution of response surface methodology to the modeling of naringin hydrolysis by naringinase Ca-alginate beads under high pressure. LWT-Food Science and Technology 43(3):482-487.
69.Roitner, M., T. Schalkhammer, and F. Pittner. 1984. Characterisation of naringinase fromAspergillus niger. Monatshefte für Chemie/Chemical Monthly 115(10):1255-1267.
70.Romero, C., A. Manjón, J. Bastida, and J. Iborra. 1985. A method for assaying the rhamnosidase activity of naringinase. Analytical biochemistry 149(2):566-571.
71.Rouseff, R. L., S. F. Martin, and C. O. Youtsey. 1987. Quantitative survey of narirutin, naringin, hesperidin, and neohesperidin in citrus. Journal of Agricultural and Food Chemistry 35(6):1027-1030.
72.Roy, G. 1992. Bitterness: reduction and inhibition. Trends in Food Science & Technology 3:85-91.
73.Sánchez‐Moreno, C., B. De Ancos, L. Plaza, P. Elez‐Martínez, and M. Pilar Cano. 2010. Effects of High‐Pressure Processing and Pulsed Electric Fields on Nutritional Quality and Health‐Related Compounds of Fruit and Vegetable Products. Nonthermal Processing Technologies for Food:502-536.
74.Saunt, J. 1990. Citrus varieties of the world. An illustrated guide. Sinclair International Ltd.
75.Shimada, K., K. Fujikawa, K. Yahara, and T. Nakamura. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of agricultural and food chemistry 40(6):945-948.
76.Singanusong, R., S. Nipornram, W. Tochampa, and P. Rattanatraiwong. 2014. Low Power Ultrasound-Assisted Extraction of Phenolic Compounds from Mandarin (Citrus reticulata Blanco cv. Sainampueng) and Lime (Citrus aurantifolia) Peels and the Antioxidant. Food Analytical Methods:1-12.
77.So, F. V., N. Guthrie, A. F. Chambers, M. Moussa, and K. K. Carroll. 1996. Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices.
78.Tsen, H. Y. and G. K. Yu. 1991. Limonin and naringin removal from grapefruit juice with naringinase entrapped in cellulose triacetate fibers. Journal of food science 56(1):31-34.
79.Uckoo, R. M., G. K. Jayaprakasha, J. A. Somerville, V. Balasubramaniam, M. Pinarte, and B. S. Patil. 2013. High pressure processing controls microbial growth and minimally alters the levels of health promoting compounds in grapefruit (Citrus paradisi Macfad) juice. Innovative Food Science & Emerging Technologies 18:7-14.
80.Vinson, J. A., Y. Hao, X. Su, and L. Zubik. 1998. Phenol antioxidant quantity and quality in foods: vegetables. Journal of Agricultural and Food Chemistry 46(9):3630-3634.
81.Williamson, J. G. 1999. Grapefruit Cultivars. Horticultural Sciences Department, Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville.
82.Winkel-Shirley, B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant physiology 126(2):485-493.
83.Xi, J., D. Shen, Y. Li, and R. Zhang. 2011. Ultrahigh pressure extraction as a tool to improve the antioxidant activities of green tea extracts. Food Research International 44(9):2783-2787.
84.Yen, G.-C. and Y.-C. Chang. 1999. Medium optimization for the production of antioxidants from Aspergillus candidus. Journal of Food Protection® 62(6):657-661.
85.Yusof, S., H. M. Ghazali, and G. S. King. 1990. Naringin content in local citrus fruits. Food Chemistry 37(2):113-121.
86.Zhang, M., C. Duan, Y. Zang, Z. Huang, and G. Liu. 2011. The flavonoid composition of flavedo and juice from the pummelo cultivar (Citrus grandis (L.) Osbeck) and the grapefruit cultivar (Citrus paradisi) from China. Food chemistry 129(4):1530-1536.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top