跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/25 13:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王佳琳
研究生(外文):Chia-Lin Wang
論文名稱:銀耳免疫調節蛋白 TFP 活化小鼠骨髓衍生性樹突細胞及作為腫瘤疫苗佐劑之探討
論文名稱(外文):Tremella fuciformis Protein (TFP) Activates Mouse Bone Marrow-derived Dendritic Cell and Acts As a Cancer Vaccine Adjuvant
指導教授:許輔許輔引用關係
口試委員:周志輝潘敏雄繆希椿
口試日期:2015-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:64
中文關鍵詞:銀耳免疫調節蛋白小鼠骨髓衍生性樹突細胞腫瘤疫苗佐劑
外文關鍵詞:Tremella fuciformisimmunomodulatory proteinbone marrow-derived dendritic cellstherapeutic cancer vaccineadjuvant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
銀耳 (Tremella fuciformis) 為亞洲傳統藥用菇類,具有多種藥理療效。文獻指出純化自銀耳之免疫調節蛋白 TFP 能透過與細胞表面 TLR4 受器結合,活化小鼠腹腔巨噬細胞產生細胞激素、提升吞噬活性及提升細胞表面分子表現量。本研究之目的為探討 TFP 是否能誘導 Th1 反應及增強免疫治療時疫苗效果之能力。首先發現 TFP 可誘導小鼠脾細胞分裂及產生 IFN-γ ,但無法直接刺激 CD90+ T 細胞增生和 IFN-γ 產生,顯示 TFP 無法直接活化 T 細胞,故推測 TFP 需透過活化抗原呈獻細胞如樹突細胞 (Dendritic cells, DCs) 使 T 細胞分化。故接著探討 TFP 對 DCs 之影響,由體外實驗得知,TFP 可增加小鼠 DCs 之 CD40、CD80 及 MHC class II 表現及發炎前驅物質 TNF-α, IL-1β, IL-6 及IL-10 分泌量,但此效果會因 TLR4 缺陷而降低,證實 TFP 具有活化樹突細胞之作用且可被 TLR4辨識。再者,預先以 TFP 及 OVA 活化過之 DCs,在 DCs 調節 T 細胞免疫反應試驗中,可較對照組增加更多 DO11.10 CD4+ T 細胞增生及 IFN-γ 分泌量,顯示 TFP 可提升 DCs 抗原呈獻能力,並將免疫反應導向 Th1。另一方面,體內試驗發現以 TFP 及 OVA 刺激之 DCs 免疫 E.G7 胸腺癌小鼠,可顯著抑制腫瘤生長並延長存活率。此 DCs 可降低罹癌小鼠血清 IL-6 含量,提升其體內 CD8+CD44high T 細胞量及抗原特異性 IFN-γ 分泌量。以上結果證實銀耳免疫調節蛋白 TFP 可透過活化 DCs 之成熟促使 Th1 型細胞分化,TFP 並可作為佐劑增強 DCs 疫苗之功效。

Tremella fuciformis is one of the fungus that used in traditional medicine in Asian and possesses a variety of pharmacological effects. Tremella fuciformis protein (TFP), an immunomudulatory protein purified from T. fuciformis, has been revealed that can induce cell cytokine production, phagocytic activity and surface marker expression in macrophages via the Toll-like receptor 4 (TLR4). In this study, the immune-activating ability of TFP on lynphocytes and promoting the efficacy of immunotherapeutic vaccines were investigated. We first found that TFP stimulated cell proliferation and IFN-γ production in splenocytes but not in CD90+ T cells. This indicating that antigen-presenting cells (APCs) such as dendritic cells (DCs) could involve in T cell activation. We then examined the TFP-induced activation on murine bone marrow derived DCs and demonstrated that TFP up-regulate the expression of CD40, CD80 and MHC class II and the production of proinflammatory cytokines such us IL-6, TNF-α, IL-1β and IL-10. On the other hand, cytokine production induced by TFP was reduced in TLR4-/- DCs, indicating TFP is recognized mainly by TLR4 to stimulate DCs maturation. Furthermore, TFP-treated DCs activated DO11.10 CD4+ T cells to secrete IFN-γ and further induced T cell proliferation in mixed lymphocyte reaction (MLR), revealing TFP-treated DCs provoke Th1 immune response in vitro. Immunization of mice with TFP-stimulated and ovalbumin (OVA)-pulsed DCs induced an effective regression of tumor growth and long-term survival in a murine E.G7 thymoma model. Injecting TFP-treated OVA-pulsed DCs in tumor-bearing mice reduced serum Il-6 levels. In addition, the number of CD8+CD44hi T cells in splenocytes had increased and the antigen-specific response in vitro had enhanced. These findings provide evidences that TFP induces Th1 response through DC maturation, and highlight TFP as an effective adjuvant for enhancing the efficacy of DC-based antitumor immunotherapy.

口試委員審定書………………………………………………………………………i
誌謝……………………………………………………………………………………ii
摘要…………………………………………………………………………………iii
Abstract………………………………………………………………………………iv
List of tables………………………………………………………………………viii
List of figures…………………………………………………………………………ix
Chapter 1. Introduction………………………………………………………………1
1.1. Tremella fuciformis and its bioactive functions……………………………………1
1.1.1. Overview of T. fuciformis……………………………………………………1
1.1.2. Bioactive functions of T. fuciformis………………………………………………2
1.2. Dendritic cells and immunology…………………………………………………4
1.3. T cells immunology………………………………………………………………5
1.4. Cancer therapy……………………………………………………………………7
1.5. Objective…………………………………………………………………………8
Chapter 2. Methods…………………………………………………………………10
2.1. Purification of TFP………………………………………………………………10
2.2. Sodium dodecyl sulfate polyacrylamide gel electrophoresis……………………11
2.3. Animals…………………………………………………………………………11
2.4. Preparation and stimulation of murine splenocytes………………………………12
2.5. Brd-U incorporation assay………………………………………………………12
2.6. Generation of mouse bone marrow derived dendritic cells (BMDCs)……………13
2.7. The stimulation of BMDCs by TFP………………………………………………13
2.8. Splenic T lymphocytes purification and CFSE staining…………………………14
2.9. Mixed lymphocyte reaction……………………………………………………14
2.10. Flow cytometric analysis………………………………………………………15
2.11. Therapeutic implanted tumor experiments……………………………………15
2.12. ELISA for IFN-γ and IL-2………………………………………………………16
2.13. ELISA for cytokine quantitation………………………………………………16
2.14. Statistical analysis………………………………………………………………16
Chapter 3. Results…………………………………………………………………18
3.1. Purification of TFP………………………………………………………………18
3.2. TFP induces murine splenocytes activation and proliferation……………………18
3.3. TFP induces BMDCs maturation and cytokine production………………………19
3.4. TFP induces DCs maturation via TLR4 signaling………………………………21
3.5. TFP-treated BMDCs stimulate T cell proliferation and IFN-γ production………21
3.6. TFP functions as an adjuvant and induces T cell response in vivo………………22
3.7. Enhancement of ntitumor efficacy by TFP………………………………………23
3.8. TFP functions as an adjuvant and induces T cell response in vivo………………24
Chapter 4. Discussion………………………………………………………………26
4.1. TFP promotes BALB/c splenocytes activation…………………………………26
4.2. TFP promotes BMDCs maturation and the relation of TLR4 signaling…………26
4.3. TFP-treated DCs activate Th1 response…………………………………………28
4.4. TFP act as an adjuvant of DCs based immunotherapy……………………………30
4.5. TFP enhances the antitumor efficacy……………………………………………30
Chapter 5. Conclusion………………………………………………………………34
References…………………………………………………………………………35
Tables……………………………………………………………………………46
Figures………………………………………………………………………………47


Akira, S., Takeda, K., and Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nature immunology, 2 (8), 675-680.
Alderton, G.K., and Bordon, Y. (2012). Tumour immunotherapy—leukocytes take up the fight. Nature Reviews Immunology, 12 (4), 237-237.
Banchereau, J., and Steinman, R.M. (1998). Dendritic cells and the control of immunity. Nature, 392 (6673), 245-252.
Basir, S.F. (2012). Textbook of immunology: PHI Learning Pvt. Ltd.
Belz, G.T., and Nutt, S.L. (2012). Transcriptional programming of the dendritic cell network. Nature Reviews Immunology, 12 (2), 101-113.
Berger, F.G. (2004). The interleukin-6 gene: a susceptibility factor that may contribute to racial and ethnic disparities in breast cancer mortality. Breast cancer research and treatment, 88 (3), 281-285.
Bjorkman, P., Saper, M., Samraoui, B., Bennett, W., Strominger, J., and Wiley, D. (1987). The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens.
Boonstra, A., Asselin-Paturel, C., Gilliet, M., Crain, C., Trinchieri, G., Liu, Y.J., and O''Garra, A. (2003). Flexibility of Mouse Classical and Plasmacytoid-derived Dendritic Cells in Directing T Helper Type 1 and 2 Cell Development Dependency on Antigen Dose and Differential Toll-like Receptor Ligation. The Journal of experimental medicine, 197 (1), 101-109.
Cahlin, C., Körner, A., Axelsson, H., Wang, W., Lundholm, K., and Svanberg, E. (2000). Experimental cancer cachexia: the role of host-derived cytokines interleukin (IL)-6, IL-12, interferon-γ, and tumor necrosis factor α evaluated in gene knockout, tumor-bearing mice on C57 Bl background and eicosanoid-dependent cachexia. Cancer research, 60 (19), 5488-5493.
Cancer, I. A. f. R. o. (2014). World cancer report 2014. Geneva: WHO.
Caux, C., Vanbervliet, B., Massacrier, C., Azuma, M., Okumura, K., Lanier, L. L., and Banchereau, J. (1994). B70/B7-2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells. The Journal of experimental medicine, 180 (5), 1841-1847.
Chen, L.H., Song, J.L., Qian, Y., Zhao, X., Suo, H.Y., and Li, J. (2014). Increased preventive effect on colon carcinogenesis by use of resistant starch (RS3) as the carrier for polysaccharide of Larimichthys crocea swimming bladder. International journal of molecular sciences, 15 (1), 817-829.
Cheng, H.H., Hou, W.C., and Lu, M.L. (2002). Interactions of lipid metabolism and intestinal physiology with Tremella fuciformis Berk edible mushroom in rats fed a high-cholesterol diet with or without Nebacitin. Journal of Agricultural and Food Chemistry, 50 (25), 7438-7443.
Cherwinski, H.M., Schumacher, J.H., Brown, K.D., and Mosmann, T. (1987). Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. The Journal of experimental medicine, 166 (5), 1229-1244.
Cheung, P.C. (1996). The hypocholesterolemic effect of two edible mushrooms: Auricularia auricula (tree-ear) and Tremella fuciformis (white jelly-leaf) in hypercholesterolemic rats 1. Nutrition Research, 16 (10), 1721-1725.
Cheung, P.C.K. (1997). Dietary fibre content and composition of some edible fungi determined by two methods of analysis. Journal of the Science of Food and Agriculture, 73 (2), 255-260.
Chow, A. (2010). Cell cycle control by oncogenes and tumor suppressors: driving the transformation of normal cells into cancerous cells. Nature Education, 3 (7).
Coussens, L.M., and Werb, Z. (2002). Inflammation and cancer. Nature, 420 (6917), 860-867.
DeGrendele, H.C., Estess, P., and Siegelman, M.H. (1997). Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science, 278 (5338), 672-675.
Dobrzanski, M.J., Reome, J.B., and Dutton, R.W. (2000). Type 1 and type 2 CD8+ effector T cell subpopulations promote long-term tumor immunity and protection to progressively growing tumor. The Journal of Immunology, 164 (2), 916-925.
Dubensky, T.W., and Reed, S.G. (2010). Adjuvants for cancer vaccines. Seminars in immunology, Vol. 22, pp. 155-161: Elsevier.
Dubois, B., Vanbervliet, B., Fayette, J., Massacrier, C., Briere, F., Banchereau, J., and Caux, C. (1997). Human dendritic/Langerhans cells control growth and differentiation of CD40 activated B cells. In Dendritic Cells in Fundamental and Clinical Immunology (pp. 329-334): Springer.
Dustin, M.L. (2008). T‐cell activation through immunological synapses and kinapses. Immunological reviews, 221 (1), 77-89.
e Sousa, C.R. (2001). Dendritic cells as sensors of infection. Immunity, 14 (5), 495-498.
Gao, Q., Seljelid, R., Chen, H., and Jiang, R. (1996). Characterisation of acidic heteroglycans from Tremella fuciformis Berk with cytokine stimulating activity. Carbohydrate research, 288, 135-142.
Gong, J., Chen, D., Kashiwaba, M., Li, Y., Chen, L., Takeuchi, H., Qu, H., Rowse, G.J., Gendler, S.J., and Kufe, D. (1998). Reversal of tolerance to human MUC1 antigen in MUC1 transgenic mice immunized with fusions of dendritic and carcinoma cells. Proceedings of the National Academy of Sciences, 95 (11), 6279-6283.
Gong, J., Nikrui, N., Chen, D., Koido, S., Wu, Z., Tanaka, Y., Cannistra, S., Avigan, D., and Kufe, D. (2000). Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity. The Journal of Immunology, 165 (3), 1705-1711.
Guermonprez, P., Valladeau, J., Zitvogel, L., Théry, C., and Amigorena, S. (2002). Antigen presentation and T cell stimulation by dendritic cells. Annual review of immunology, 20 (1), 621-667.
Gunzer, M., and Grabbe, S. (2001). Dendritic cells in cancer immunotherapy. Critical Reviews™ in Immunology, 21 (1-3).
Harrington, L.E., Mangan, P.R., and Weaver, C.T. (2006). Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Current opinion in immunology, 18 (3), 349-356.
Houghton, A.N., Gold, J.S., and Blachere, N.E. (2001). Immunity against cancer: lessons learned from melanoma. Current opinion in immunology, 13 (2), 134-140.
Houghton, A.N., and Guevara-Patiño, J.A. (2004). Immune recognition of self in immunity against cancer. Journal of Clinical Investigation, 114 (4), 468.
Hsieh, C.S., Macatonia, S.E., Tripp, C.S., Wolf, S.F., O''Garra, A., and Murphy, K.M. (1993). Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science, 260 (5107), 547-549.
Huang, N. (2000). The production of Tremella fuciformis in China. In: China Agricultural Press, Beijing.
Hung, C.L., Chang, A.J., Kuo, X.K., and Sheu, F. (2014). Molecular Cloning and Function Characterization of a New Macrophage-Activating Protein from Tremella fuciformis. Journal of agricultural and food chemistry, 62 (7), 1526-1535.
Igney, F.H., and Krammer, P.H. (2002). Immune escape of tumors: apoptosis resistance and tumor counterattack. Journal of leukocyte biology, 71 (6), 907-920.
Jiang, P.L., Lin, H.J., Wang, H.W., Tsai, W.Y., Lin, S.F., Chien, M.Y., Liang, P.H., Huang, Y.Y., and Liu, D.Z. (2015). Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity. Acta biomaterialia, 11, 356-367.
Kapsenberg, M.L. (2003). Dendritic-cell control of pathogen-driven T-cell polarization. Nature Reviews Immunology, 3 (12), 984-993.
Kiho, T., Tsujimura, Y., Sakushima, M., Usui, S., and Ukai, S. (1994). Polysaccharides in fungi. XXXIII. Hypoglycemic activity of an acidic polysaccharide (AC) from Tremella fuciformis. Journal of the Pharmaceutical Society of Japan, 114 (5), 308-315.
Kim, G.Y., Lee, M.Y., Lee, H.J., Moon, D.O., Lee, C.M., Jin, C.Y., Choi, Y. H., Jeong, Y.K., Chung, K. T., and Lee, J.Y. (2005). Effect of water-soluble proteoglycan isolated from Agaricus blazei on the maturation of murine bone marrow-derived dendritic cells. International immunopharmacology, 5 (10), 1523-1532.
Kishimote, T., Akira, S., and Taga, T. (1992). Interleukln-6 and Its Receptor: a paradigm for cytoklnes. Science, 258, 593-597.
Koido, S., Hara, E., Torii, A., Homma, S., Toyama, Y., Kawahara, H., Ogawa, M., Watanabe, M., Yanaga, K., and Fujise, K. (2005). Induction of antigen‐specific CD4‐and CD8‐mediated T‐cell responses by fusions of autologous dendritic cells and metastatic colorectal cancer cells. International Journal of Cancer, 117 (4), 587-595.
Koido, S., Ohana, M., Liu, C., Nikrui, N., Durfee, J., Lerner, A., and Gong, J. (2004). Dendritic cells fused with human cancer cells: morphology, antigen expression, and T cell stimulation. Clinical Immunology, 113 (3), 261-269.
Lakhanpal, T., and Rana, M. (2005). Medicinal and nutraceutical genetic resources of mushrooms. Plant Genetic Resources: characterization and utilization, 3 (02), 288-303.
Le Gros, G., Ben-Sasson, S.Z., Seder, R., Finkelman, F., and Paul, W. (1990). Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. The Journal of experimental medicine, 172 (3), 921-929.
Lenschow, D.J., Walunas, T.L., and Bluestone, J.A. (1996). CD28/B7 system of T cell costimulation. Annual review of immunology, 14 (1), 233-258.
Ley, K. (2014). The second touch hypothesis: T cell activation, homing and polarization. F1000Research, 3.
Li, H., Wu, W.K.K., Li, Z.J., Chan, K.M., Wong, C.C.M., Ye, C.G., Yu, L., Sung, J.J.Y., Cho, C.H., and Wang, M. (2010). 2, 3′, 4, 4′, 5′‐Pentamethoxy‐trans‐stilbene, a resveratrol derivative, inhibits colitis‐associated colorectal carcinogenesis in mice. British journal of pharmacology, 160 (6), 1352-1361.
Liew, F.Y. (2002). TH1 and TH2 cells: a historical perspective. Nature Reviews Immunology, 2 (1), 55-60.
Lin, W.W., and Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. Journal of Clinical Investigation, 117 (5), 1175.
Lin, Y.L., Lee, S.S., Hou, S.M., and Chiang, B.L. (2006). Polysaccharide purified from Ganoderma lucidum induces gene expression changes in human dendritic cells and promotes T helper 1 immune response in BALB/c mice. Molecular pharmacology, 70 (2), 637-644.
Lombardi, V., Van Overtvelt, L., Horiot, S., Moussu, H., Chabre, H., Louise, A., Balazuc, A. M., Mascarell, L., and Moingeon, P. (2008). Toll‐like receptor 2 agonist Pam3CSK4 enhances the induction of antigen‐specific tolerance via the sublingual route. Clinical and Experimental Allergy, 38 (11), 1819-1829.
Lu, Y.C., Yeh, W.C., and Ohashi, P.S. (2008). LPS/TLR4 signal transduction pathway. Cytokine, 42 (2), 145-151.
Luo, Y., Chen, G., Li, B., Ji, B., Guo, Y., and Tian, F. (2009). Evaluation of antioxidative and hypolipidemic properties of a novel functional diet formulation of Auricularia auricula and Hawthorn. Innovative Food Science and Emerging Technologies, 10 (2), 215-221.
Lutz, M.B., Kukutsch, N., Ogilvie, A.L., Rößner, S., Koch, F., Romani, N., and Schuler, G. (1999). An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. Journal of immunological methods, 223 (1), 77-92.
Ma, L., and Lin, Z. (1991). Effect of Tremella polysaccharide on IL-2 production by mouse splenocytes. Acta pharmaceutica Sinica, 27 (1), 1-4.
Mackay, C.R. (1991). T-cell memory: the connection between function, phenotype and migration pathways. Immunology today, 12 (6), 189-192.
Mackay, I.R., Rosen, F.S., Medzhitov, R., and Janeway Jr, C. (2000). Innate immunity. New England Journal of Medicine, 343 (5), 338-344.
Maiti, S., Bhutia, S.K., Mallick, S.K., Kumar, A., Khadgi, N., and Maiti, T.K. (2008). Antiproliferative and immunostimulatory protein fraction from edible mushrooms. Environmental toxicology and pharmacology, 26 (2), 187-191.
Matijevic, T., and Pavelic, J. (2010). Toll-like receptors: cost or benefit for cancer? Current pharmaceutical design, 16 (9), 1081-1090.
McKnight, A.J., Zimmer, G.J., Fogelman, I., Wolf, S.F., and Abbas, A.K. (1994). Effects of IL-12 on helper T cell-dependent immune responses in vivo. The Journal of Immunology, 152 (5), 2172-2179.
Mellman, I., Coukos, G., and Dranoff, G. (2011). Cancer immunotherapy comes of age. Nature, 480 (7378), 480-489.
Mellman, I., and Steinman, R.M. (2001). Dendritic cells: specialized and regulated antigen processing machines. Cell, 106 (3), 255-258.
Mesa, C., and Fernández, L. E. (2004). Challenges facing adjuvants for cancer immunotherapy. Immunology and cell biology, 82 (6), 644-650.
Moore, M.W., Carbone, F.R., and Bevan, M.J. (1988). Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell, 54 (6), 777-785.
Morefield, G.L., Hawkins, L.D., Ishizaka, S.T., Kissner, T.L., and Ulrich, R.G. (2007). Synthetic Toll-like receptor 4 agonist enhances vaccine efficacy in an experimental model of toxic shock syndrome. Clinical and Vaccine Immunology, 14 (11), 1499-1504.
Morelli, A.E., Zahorchak, A.F., Larregina, A.T., Colvin, B.L., Logar, A.J., Takayama, T., Falo, L.D., and Thomson, A.W. (2001). Cytokine production by mouse myeloid dendritic cells in relation to differentiation and terminal maturation induced by lipopolysaccharide or CD40 ligation. Blood, 98 (5), 1512-1523.
Palucka, K., Banchereau, J., and Mellman, I. (2010). Designing vaccines based on biology of human dendritic cell subsets. Immunity, 33 (4), 464-478.
Parham, P. (2014). The immune system: Garland Science.
Patel, M., Xu, D., Kewin, P., Choo-Kang, B., McSharry, C., Thomson, N.C., and Liew, F.Y. (2005). TLR2 agonist ameliorates established allergic airway inflammation by promoting Th1 response and not via regulatory T cells. The Journal of Immunology, 174 (12), 7558-7563.
Perrier, C., and Rutgeerts, P. (2011). Cytokine blockade in inflammatory bowel diseases. Immunotherapy, 3 (11), 1341-1352.
Qingle, X. (2002). The immunoloregulation of mushroom polysaccharides and tremella polysaccharides for mouse loading tumor. Zhejiang Clinical Medical Journal, 10, 008.
Ren, Z., Guo, Z., Meydani, S.N., and Wu, D. (2008). White button mushroom enhances maturation of bone marrow-derived dendritic cells and their antigen presenting function in mice. The Journal of nutrition, 138 (3), 544-550.
Robbins, P.F., and Kawakami, Y. (1996). Human tumor antigens recognized by T cells. Current opinion in immunology, 8 (5), 628-636.
Rosenberg, S.A. (2001). Progress in human tumour immunology and immunotherapy. Nature, 411 (6835), 380-384.
Rosenberg, S.A., Yang, J.C., and Restifo, N.P. (2004). Cancer immunotherapy: moving beyond current vaccines. Nature medicine, 10 (9), 909-915.
Rutgeerts, P., Vermeire, S., and Van Assche, G. (2009). Biological therapies for inflammatory bowel diseases. Gastroenterology, 136 (4), 1182-1197.
Satthaporn, S., and Eremin, O. (2001). Dendritic cells (I): Biological functions. Journal of the Royal College of Surgeons of Edinburgh, 46 (1), 9-19.
Schiavoni, G., Mattei, F., Di Pucchio, T., Santini, S.M., Bracci, L., Belardelli, F., and Proietti, E. (2000). Cyclophosphamide induces type I interferon and augments the number of CD44hi T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer. Blood, 95 (6), 2024-2030.
Smyth, M.J., Godfrey, D.I., and Trapani, J.A. (2001). A fresh look at tumor immunosurveillance and immunotherapy. Nature immunology, 2 (4), 293-299.
Sornasse, T., Flamand, V., De Becker, G., Bazin, H., Tielemans, F., Thielemans, K., Urbain, J., Leo, O., and Moser, M. (1992). Antigen-pulsed dendritic cells can efficiently induce an antibody response in vivo. The Journal of experimental medicine, 175 (1), 15-21.
Tsao, Y.W., Kuan, Y.C., Wang, J.L., and Sheu, F. (2013). Characterization of a novel maitake (Grifola frondosa) protein that activates natural killer and dendritic cells and enhances antitumor immunity in mice. Journal of agricultural and food chemistry, 61 (41), 9828-9838.
Tomai, M. A., & Johnson, A. G. (1989). T cell and interferon-gamma involvement in the adjuvant action of a detoxified endotoxin. Journal of biological response modifiers, 8(6), 625-643.
van der Bruggen, P., Traversari, C., Chomez, P., Lurquin, C., De Plaen, E., Van den Eynde, B., Knuth, A., and Boon, T. (1991). A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 254 (5038), 1643-1647.
van Kooten, C., and Banchereau, J. (2000). CD40-CD40 ligand. Journal of leukocyte biology, 67 (1), 2-17.
Visintin, A., Mazzoni, A., Spitzer, J.H., Wyllie, D.H., Dower, S.K., and Segal, D.M. (2001). Regulation of Toll-like receptors in human monocytes and dendritic cells. The Journal of Immunology, 166 (1), 249-255.
Waldner, M.J., Foersch, S., and Neurath, M.F. (2012). Interleukin-6-A key regulator of colorectal cancer development. International journal of biological sciences, 8 (9), 1248.
Wang, Z., Yang, S., Li, L., Zhou, F., and Wang, R. (1983). Studies on the effects of Tremella fuciformis Berk preparation on immunity and blood formation in rhesus monkeys. Journal of traditional Chinese medicine= Chung i tsa chih ying wen pan/sponsored by All-China Association of Traditional Chinese Medicine, Academy of Traditional Chinese Medicine, 3 (1), 13.
Weber, K., and Osborn, M. (1969). The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. Journal of Biological Chemistry, 244 (16), 4406-4412.
Wells, K. (1961). Studies of some Tremellaceae. IV. Exidiopsis. Mycologia, 317-370.
Wick, M., Dubey, P., Koeppen, H., Siegel, C.T., Fields, P.E., Chen, L., Bluestone, J. A., and Schreiber, H. (1997). Antigenic cancer cells grow progressively in immune hosts without evidence for T cell exhaustion or systemic anergy. The Journal of experimental medicine, 186 (2), 229-238.
Xia, D., and Lin, Z. (1989). Effects of Tremella polysaccharides on immune function in mice. Acta pharmacologica Sinica, 10 (5), 453-457.
Yu, Z., Theoret, M.R., Touloukian, C.E., Surman, D.R., Garman, S.C., Feigenbaum, L., Baxter, T.K., Baker, B.M., and Restifo, N.P. (2004). Poor immunogenicity of a self/tumor antigen derives from peptide–MHC-I instability and is independent of tolerance. Journal of Clinical Investigation, 114 (4), 551.
Zhu, J., Yamane, H., and Paul, W.E. (2010). Differentiation of effector CD4 T cell populations. Annual review of immunology, 28, 445.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top