跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭勇嶸
研究生(外文):Yung-Jung Hsiao
論文名稱:甘丙肽第2型受體在正中神經病變疼痛中所扮演的角色
論文名稱(外文):The Role of Galanin Receptor 2 in the Median Nerve Neuropathic Pain
指導教授:呂俊宏呂俊宏引用關係
指導教授(外文):June-Horng Lue
口試委員:溫振源陳淑華蔡怡汝林至德
口試委員(外文):Chen-Yuan WenSeu-Hwa ChenYi-Ju TsaiChi-Te Lin
口試日期:2015-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:解剖學暨細胞生物學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:88
中文關鍵詞:甘丙肽第2型受體背根神經節楔狀神經核正中神經慢性纏繞傷害通道蛋白受體蛋白神經傳遞物質
外文關鍵詞:GalR2DRGCuneate nucleusChronic constriction injurychannel proteinreceptor proteinneurotransmitter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
Galanin對於周邊神經疼痛訊息傳遞具有促進或抑制的效果,可能來自於周邊神經產生病變之後造成不同的神經傳遞物質以及受體的活化,因而改變了其在疼痛傳遞上所扮演的角色。而研究指出galanin藉由其第二型受體 (galanin receptor 2, GalR2 )調控而促進周邊神經病變疼痛的傳遞,但對於正中神經損傷後影響GalR2及所含神經傳遞物質數量上的變化仍欠缺直接證據,更遑論它對於正中神經損傷後引發的感覺疼痛異常的影響。
本研究發現在正常大白鼠的背根神經節 (dorsal root ganglia)中,GalR2免疫反應神經元主要表現在小型神經元,而當正中神經慢性纏繞傷害後一週,背根神經節中GalR2免疫反應神經元百分比會有顯著的上升,且在形態上觀察發現GalR2免疫反應神經元的分布相較之下開始出現於偏中大型神經元。當配合與matrix metalloproteinase-9 (MMP-9)、acid-sensing ion channel 3 (ASIC3)、protease-activated receptor 2 (PAR2)、P2X3、hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1)等傳遞物質或通道蛋白進行雙重免疫螢光標誌,結果發現神經損傷後一週共同免疫螢光標誌神經元所佔百分比有顯著增加,證明周邊神經損傷損傷伴隨著許多發炎現象或離子通道蛋白的活化極可能為促進GalR2增加表現的原因之一,接著再觀察GalR2與NF200、galanin、neuropeptide Y (NPY)、neuronal nitric oxide synthase (nNOS)等神經傳遞因子有雙重免疫螢光標誌神經元的數量及其佔背根神經節的百分比,發現都有顯著的增加。結果顯示正中神經慢性纏繞傷害後,誘導GalR2免疫反應神經元增升部分為中大型神經元且同時具有NPY、galanin、nNOS的表現。接著我們研究發現給予GalR2增效劑AR-M1896及拮抗劑M871處理時,分析其行為反應及楔狀神經核內原致癌基因免疫反應神經元的數量變化,結果發現觸覺痛以及電刺激所引發楔狀神經核內c-Fos神經元的數量以AR-M1896和M871處理組別分別有顯著加劇並且數量增加或緩解並且數量下降的情形。綜合以上結果顯示,正中神經慢性纏繞傷害GalR2免疫反應數量的增加可能透過疼痛相關因子的活化,並且同時促進所含之神經傳遞物質向下游傳遞釋放,進而促使楔狀神經核內c-Fos免疫反應神經元的增加,而與外在痛覺訊息傳遞有所關聯。經由本實驗結果推論GalR2的活化或許對於腕隧道症候群所造成的神經病變疼痛可能誘發的機制是一個關鍵的因素,希望藉此研究能提供臨床上一個新的治療方向。


Galanin is a neuropeptide expressed in dorsal root ganglion (DRG) neurons and spinal dorsal horn neurons. It is involved in a variety of biological functions, including a important role in nociception. Previous studies have shown that galanin modulated neuropathic pain via galanin receptor 2 (GalR2) after peripheral nerve injury. However, the direct evidence of GalR2 involved in the median nerve induced neuropathic pain sensation is unavailable.
Our experimental animal model is median nerve chronic constriction injury (CCI) for inducing neuropathic pain in. Then, we found that the percentage of GalR2-LI neurons in the C6 DRG peaked at 1 week after CCI treatment. We further investigate the relationship between GalR2 and proinflammatory factor matrix metalloproteinase-9 (MMP-9), protease-activated receptor 2 (PAR2) and pain-related channels or markers including acid-sensing ion channel 3 (ASIC3)、P2X3、hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1)、galanin、neuropeptide Y (NPY) and neuronal nitric oxide synthase (nNOS) in the C6 DRGs of CCI and naïve rats by immunofluorescence (IF) double labeling. The result showed that the percentage of the above-mentioned double labeling neurons in the injured DRG were all have significantly increased. These result suggested that CCI treatment induced neuronal inflammation, proton, ATP and ectopic discharge may be reasonable to up-regulate GalR2 expression in the A-type and injury side of DRG neurons and cuneate nucleus. Furthermore, the percentage of GalR2-LI DRG containing galanin、NPY and nNOS was significantly increased. Then, we employed CCI treatment along with GalR2 agonist (AR-M1896) and GalR2 antagonist (M871) intraplantar application to examine their effect on median neuropathic pain and c-Fos expression in the stimulated side in cuneate nucleus. Our result revealed that the level of mechanical allodynia、thermal hyperalgesia and the number of c-Fos neuron were markedly increased in the GalR2 agonist treatment and attenuated in the GalR2 antagonist treatment group.
According to our findings, CCI induced GalR2-LI neurons activation probably through galanin, NPY or NO triggers c-Fos expression in the CN and transmits neuropathic pain sensation to the thalamus. These evidence shows that GalR2 may be a potential clinical therapeutic target of neuropathic pain after median nerve injury.


目錄
口試委員會審定書.........................................................................................................Ⅰ
致謝.................................................................................................................................Ⅱ
中文摘要.........................................................................................................................Ⅲ
英文摘要.........................................................................................................................Ⅴ
壹、緒論.............................................................................................................................1
一、神經病變疼痛 (neuropathic pain)……………………………………………..1
1.1 原理………………………………………………...…………….....……1
1.2疼痛訊息傳遞路徑………………………………………….....….………2
1.3 神經病變疼痛之動物傷害模式………………......……….......…….…..2
二、甘丙肽第2型受體與神經損傷的關係…..............……......……........………. 3
三、神經損傷早期誘導發炎因子的表現.................................................................6
3.1 基質金屬蛋白酶9 (Matrix metalloprotease – 9, MMP-9)........................6
四、神經損傷促進相關離子通道及受體蛋白的活化.............................................7
4.1 酸敏感離子通道3 (Acid-sensing ion channel 3, ASIC3)..........................7
4.2 蛋白酶活化受體2 (Protease–activated receptor 2, PAR2)........................7
4.3 P2X purinoceptor 3 (P2X3).........................................................................8
4.4 Hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1)....9
五、神經損傷促進疼痛相關蛋白的合成...............................................................10
5.1 神經胜肽Y (Neuropeptide Y, NPY)........................................................10
5.2 神經性一氧化氮合成酶 (neuronal Nitric Oxide Synthase, nNOS).......10
六、背柱-內側蹄系路徑與神經病變疼痛的關係.................................................11
七、原始致癌基因 (Proto-oncogene) c-Fos...........................................................12
八、實驗目的...........................................................................................................13
貳、實驗材料與方法.......................................................................................................15
一、實驗動物...........................................................................................................15
二、正中神經慢性纏繞傷害之實驗動物模式.......................................................15
三、前肢掌內注射GalR2增效劑或拮抗劑之動物行為測試................................15
3.1 機械性觸覺痛刺激測試..........................................................................16
3.2 熱痛覺過敏刺激測試..............................................................................17
四、藥物處理配合電刺激.......................................................................................17
五、動物犧牲灌流...................................................................................................18
六、組織製備...........................................................................................................18
6.1 第六、第七頸髓段背根神經節................................................................18
6.1.1 石蠟包埋處理...............................................................................18
6.1.2 組織貼片處理...............................................................................19
6.2 腦幹¬ – 楔狀神經核.................................................................................19
6.2.1 腦幹冷凍切片...............................................................................19
七、免疫組織化學染色反應 (Immunohistochemistry stain, IHC)........................19
7.1 背根神經節–石蠟切片...........................................................................19
7.2 楔狀神經核 - 冷凍切片.........................................................................21
八、背根神經節中GalR2與痛覺相關因子雙重免疫螢光標誌染色....................22
九、影像及定量分析...............................................................................................23
參、結果...........................................................................................................................25
一、Galanin免疫反應神經元在第六頸髓段背根神經節中的表現情形..............25
二、GalR2免疫反應神經元在第六頸髓段背根神經節中的表現情形................25
三、GalR2與NF200在背根神經節中雙重螢光標誌情形....................................26
四、GalR2與發炎相關因子、通道及受體蛋白在第六頸髓段背根神經節中的分布及表現變化.........................................................................................................26
4.1 GalR2與MMP-9在第六頸髓段背根神經節中雙重螢光標誌情形........26
4.2 GalR2與ASIC3在第六頸髓段背根神經節中雙重螢光標誌情形..........27
4.3 GalR2與PAR2在第六頸髓段背根神經節中雙重螢光標誌情形...........27
4.4 GalR2與P2X3在第六頸髓段背根神經節中雙重螢光標誌情形............27
4.5 GalR2與HCN1在第六頸髓段背根神經節中雙重螢光標誌情形..........28
五、GalR2的活化與疼痛相關因子在第六頸髓段背根神經節中的分布及表現變化.............................................................................................................................28
5.1 GalR2與galanin在第六頸髓段背根神經節中雙重螢光標誌情形.........28
5.2 GalR2與NPY在第六頸髓段背根神經節中雙重螢光標誌情形..............29
5.3 GalR2與nNOS在第六頸髓段背根神經節中雙重螢光標誌情形............29
六、GalR2免疫反應神經元在楔狀神經核中段區域的分布及表現變化..............29
七、以GalR2增效劑或抑制劑處理對於正中神經慢性纏繞傷害所引發神經病變疼痛行為的影響.......................................................................................................30
7.1 實驗動物對機械性刺激行為感受實驗..................................................30
7.2 實驗動物對熱痛覺刺激行為感受實驗...................................................31
八、在損傷側正中神經施以電刺激觀察楔狀神經核內c-FOS免疫反應神經元的表現變化.............................................................................................................32
肆、討論...........................................................................................................................33
一、正中神經慢性纏繞傷害後GalR2在背根神經節中的表現............................33
二、周邊神經損傷對於GalR2和發炎因子彼此之間的影響................................34
三、周邊神經損傷對於GalR2和通道或受體蛋白彼此之間的影響....................34
四、GalR2活化後對於相關神經傳遞物質表現的影響.........................................37
五、GalR2活化後在神經病變疼痛中所扮演的角色.............................................39
伍、參考文獻...................................................................................................................41
陸、圖與圖說...................................................................................................................58


伍、參考文獻
Acosta C, McMullan S, Djouhri L, Gao L, Watkins R, Berry C, Dempsey K, Lawson SN (2012) HCN1 and HCN2 in Rat DRG neurons: levels in nociceptors and non-nociceptors, NT3-dependence and influence of CFA-induced skin inflammation on HCN2 and NT3 expression. PloS one 7:e50442.
Akopian AN, Chen CC, Ding Y, Cesare P, Wood JN (2000) A new member of the acid-sensing ion channel family. Neuroreport 11:2217-2222.
Andersen P, Eccles JC, Oshima T, Schmidt RF (1964) Mechanisms of Synaptic Transmission in the Cuneate Nucleus. Journal of neurophysiology 27:1096-1116.
Averill S, Inglis JJ, King VR, Thompson SW, Cafferty WB, Shortland PJ, Hunt SP, Kidd BL, Priestley JV (2008) Reg-2 expression in dorsal root ganglion neurons after adjuvant-induced monoarthritis. Neuroscience 155:1227-1236.
Badie-Mahdavi H, Lu X, Behrens MM, Bartfai T (2005) Role of galanin receptor 1 and galanin receptor 2 activation in synaptic plasticity associated with 3'',5''-cyclic AMP response element-binding protein phosphorylation in the dentate gyrus: studies with a galanin receptor 2 agonist and galanin receptor 1 knockout mice. Neuroscience 133:591-604.
Bartfai T, Hokfelt T, Langel U (1993) Galanin--a neuroendocrine peptide. Critical reviews in neurobiology 7:229-274.
Bedecs K, Berthold M, Bartfai T (1995) Galanin--10 years with a neuroendocrine peptide. The international journal of biochemistry & cell biology 27:337-349.
Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87-107.
Benson CJ, Xie J, Wemmie JA, Price MP, Henss JM, Welsh MJ, Snyder PM (2002) Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proceedings of the National Academy of Sciences of the United States of America 99:2338-2343.
Berkley KJ, Hubscher CH (1995) Are there separate central nervous system pathways for touch and pain? Nature medicine 1:766-773.
Berkley KJ, Budell RJ, Blomqvist A, Bull M (1986) Output systems of the dorsal column nuclei in the cat. Brain research 396:199-225.
Berridge MJ (1986) Growth factors, oncogenes and inositol lipids. Cancer surveys 5:413-430.
Biel M, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarization-activated cation channels: from genes to function. Physiological reviews 89:847-885.
Bland-Ward PA, Humphrey PP (1997) Acute nociception mediated by hindpaw P2X receptor activation in the rat. British journal of pharmacology 122:365-371.
Bleehen T, Keele CA (1977) Observations on the algogenic actions of adenosine compounds on the human blister base preparation. Pain 3:367-377.
Bradbury EJ, Burnstock G, McMahon SB (1998) The expression of P2X3 purinoreceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Molecular and cellular neurosciences 12:256-268.
Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature 313:54-56.
Branchek TA, Smith KE, Gerald C, Walker MW (2000) Galanin receptor subtypes. Trends in pharmacological sciences 21:109-117.
Brass LF, Molino M (1997) Protease-activated G protein-coupled receptors on human platelets and endothelial cells. Thrombosis and haemostasis 78:234-241.
Bridges D, Thompson SW, Rice AS (2001) Mechanisms of neuropathic pain. British journal of anaesthesia 87:12-26.
Brown AG, Brown PB, Fyffe RE, Pubols LM (1983) Receptive field organization and response properties of spinal neurones with axons ascending the dorsal columns in the cat. The Journal of physiology 337:575-588.
Bullitt E (1990) Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. The Journal of comparative neurology 296:517-530.
Bullitt E (1991) Somatotopy of spinal nociceptive processing. The Journal of comparative neurology 312:279-290.
Burazin TC, Gundlach AL (1998) Inducible galanin and GalR2 receptor system in motor neuron injury and regeneration. Journal of neurochemistry 71:879-882.
Burazin TC, Larm JA, Ryan MC, Gundlach AL (2000) Galanin-R1 and -R2 receptor mRNA expression during the development of rat brain suggests differential subtype involvement in synaptic transmission and plasticity. The European journal of neuroscience 12:2901-2917.
Burgess PR, Perl ER (1967) Myelinated afferent fibres responding specifically to noxious stimulation of the skin. The Journal of physiology 190:541-562.
Burgevin MC, Loquet I, Quarteronet D, Habert-Ortoli E (1995) Cloning, pharmacological characterization, and anatomical distribution of a rat cDNA encoding for a galanin receptor. Journal of molecular neuroscience : MN 6:33-41.
Campbell JN, Raja SN, Meyer RA, Mackinnon SE (1988) Myelinated afferents signal the hyperalgesia associated with nerve injury. Pain 32:89-94.
Cenac N, Garcia-Villar R, Ferrier L, Larauche M, Vergnolle N, Bunnett NW, Coelho AM, Fioramonti J, Bueno L (2003) Proteinase-activated receptor-2-induced colonic inflammation in mice: possible involvement of afferent neurons, nitric oxide, and paracellular permeability. Journal of immunology 170:4296-4300.
Ch''ng JL, Christofides ND, Anand P, Gibson SJ, Allen YS, Su HC, Tatemoto K, Morrison JF, Polak JM, Bloom SR (1985) Distribution of galanin immunoreactivity in the central nervous system and the responses of galanin-containing neuronal pathways to injury. Neuroscience 16:343-354.
Chaplan SR, Guo HQ, Lee DH, Luo L, Liu C, Kuei C, Velumian AA, Butler MP, Brown SM, Dubin AE (2003) Neuronal hyperpolarization-activated pacemaker channels drive neuropathic pain. The Journal of neuroscience : the official journal of the Society for Neuroscience 23:1169-1178.
Chattopadhyay S, Myers RR, Janes J, Shubayev V (2007) Cytokine regulation of MMP-9 in peripheral glia: implications for pathological processes and pain in injured nerve. Brain, behavior, and immunity 21:561-568.
Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377:428-431.
Chen CC, Zimmer A, Sun WH, Hall J, Brownstein MJ, Zimmer A (2002a) A role for ASIC3 in the modulation of high-intensity pain stimuli. Proceedings of the National Academy of Sciences of the United States of America 99:8992-8997.
Chen J, Piper DR, Sanguinetti MC (2002b) Voltage sensing and activation gating of HCN pacemaker channels. Trends Cardiovasc Med 12:42-45.
Chen Y, Shu Y, Zhao Z (1999) Ectopic purinergic sensitivity develops at sites of chronic nerve constriction injury in rat. Neuroreport 10:2779-2782.
Chudler EH, Dong WK (1983) Neuroma pain model: correlation of motor behavior and body weight with autotomy in rats. Pain 17:341-351.
Chung K, Langford LA, Coggeshall RE (1987) Primary afferent and propriospinal fibers in the rat dorsal and dorsolateral funiculi. The Journal of comparative neurology 263:68-75.
Cizkova D, Lukacova N, Marsala M, Marsala J (2002) Neuropathic pain is associated with alterations of nitric oxide synthase immunoreactivity and catalytic activity in dorsal root ganglia and spinal dorsal horn. Brain research bulletin 58:161-171.
Cliffer KD, Willis WD (1994) Distribution of the postsynaptic dorsal column projection in the cuneate nucleus of monkeys. The Journal of comparative neurology 345:84-93.
Coderre TJ, Katz J, Vaccarino AL, Melzack R (1993) Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain 52:259-285.
Conklin BR, Herzmark P, Ishida S, Voyno-Yasenetskaya TA, Sun Y, Farfel Z, Bourne HR (1996) Carboxyl-terminal mutations of Gq alpha and Gs alpha that alter the fidelity of receptor activation. Molecular pharmacology 50:885-890.
Cook SP, McCleskey EW (2002) Cell damage excites nociceptors through release of cytosolic ATP. Pain 95:41-47.
Corey DP, Garcia-Anoveros J (1996) Mechanosensation and the DEG/ENaC ion channels. Science 273:323-324.
Coronel MF, Brumovsky PR, Hokfelt T, Villar MJ (2008) Differential galanin upregulation in dorsal root ganglia and spinal cord after graded single ligature nerve constriction of the rat sciatic nerve. Journal of chemical neuroanatomy 35:94-100.
Curran T, Franza BR, Jr. (1988) Fos and Jun: the AP-1 connection. Cell 55:395-397.
Curran T, Bravo R, Muller R (1985) Transient induction of c-fos and c-myc in an immediate consequence of growth factor stimulation. Cancer surveys 4:655-681.
Dai Y, Moriyama T, Higashi T, Togashi K, Kobayashi K, Yamanaka H, Tominaga M, Noguchi K (2004) Proteinase-activated receptor 2-mediated potentiation of transient receptor potential vanilloid subfamily 1 activity reveals a mechanism for proteinase-induced inflammatory pain. The Journal of neuroscience : the official journal of the Society for Neuroscience 24:4293-4299.
Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. The Journal of clinical investigation 117:1979-1987.
Day AS, Lue JH, Sun WZ, Shieh JY, Wen CY (2001a) A beta-fiber intensity stimulation of chronically constricted median nerve induces c-fos expression in thalamic projection neurons of the cuneate nucleus in rats with behavioral signs of neuropathic pain. Brain research 895:194-203.
Day AS, Wen CY, Shieh JY, Sun WZ, Lue JH (2001b) Somatic noxious mechanical stimulation induces Fos expression in the postsynaptic dorsal column neurons in laminae III and IV of the rat spinal dorsal horn. Neuroscience research 40:343-350.
Dery O, Corvera CU, Steinhoff M, Bunnett NW (1998) Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. The American journal of physiology 274:C1429-1452.
Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25:9-34.
Devor M, Raber P (1983) Autotomy after nerve injury and its relation to spontaneous discharge originating in nerve-end neuromas. Behav Neural Biol 37:276-283.
Dorn G, Patel S, Wotherspoon G, Hemmings-Mieszczak M, Barclay J, Natt FJ, Martin P, Bevan S, Fox A, Ganju P, Wishart W, Hall J (2004) siRNA relieves chronic neuropathic pain. Nucleic acids research 32:e49.
Draisci G, Iadarola MJ (1989) Temporal analysis of increases in c-fos, preprodynorphin and preproenkephalin mRNAs in rat spinal cord. Brain research Molecular brain research 6:31-37.
Dunn PM, Zhong Y, Burnstock G (2001) P2X receptors in peripheral neurons. Progress in neurobiology 65:107-134.
Fathi Z, Cunningham AM, Iben LG, Battaglino PB, Ward SA, Nichol KA, Pine KA, Wang J, Goldstein ME, Iismaa TP, Zimanyi IA (1997) Cloning, pharmacological characterization and distribution of a novel galanin receptor. Brain research Molecular brain research 51:49-59.
Fathi Z, Battaglino PM, Iben LG, Li H, Baker E, Zhang D, McGovern R, Mahle CD, Sutherland GR, Iismaa TP, Dickinson KE, Zimanyi IA (1998) Molecular characterization, pharmacological properties and chromosomal localization of the human GALR2 galanin receptor. Brain research Molecular brain research 58:156-169.
Fukuoka T, Tokunaga A, Kondo E, Miki K, Tachibana T, Noguchi K (1998) Change in mRNAs for neuropeptides and the GABA(A) receptor in dorsal root ganglion neurons in a rat experimental neuropathic pain model. Pain 78:13-26.
Furness JB, Costa M, Rokaeus A, McDonald TJ, Brooks B (1987) Galanin-immunoreactive neurons in the guinea-pig small intestine: their projections and relationships to other enteric neurons. Cell and tissue research 250:607-615.
Fyffe RE, Cheema SS, Light AR, Rustioni A (1986) Intracellular staining study of the feline cuneate nucleus. II. Thalamic projecting neurons. Journal of neurophysiology 56:1284-1296.
Gao LL, McMullan S, Djouhri L, Acosta C, Harper AA, Lawson SN (2012) Expression and properties of hyperpolarization-activated current in rat dorsal root ganglion neurons with known sensory function. The Journal of physiology 590:4691-4705.
Garthwaite J, Southam E, Boulton CL, Nielsen EB, Schmidt K, Mayer B (1995) Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Molecular pharmacology 48:184-188.
Gautam M, Benson CJ, Sluka KA (2010) Increased response of muscle sensory neurons to decreases in pH after muscle inflammation. Neuroscience 170:893-900.
Giesler GJ, Jr., Cliffer KD (1985) Postsynaptic dorsal column pathway of the rat. II. Evidence against an important role in nociception. Brain research 326:347-356.
Gildenberg PL, Hirshberg RM (1984) Limited myelotomy for the treatment of intractable cancer pain. Journal of neurology, neurosurgery, and psychiatry 47:94-96.
Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and the short of long-term memory--a molecular framework. Nature 322:419-422.
Gonzalez-Hernandez T, Rustioni A (1999a) Nitric oxide synthase and growth-associated protein are coexpressed in primary sensory neurons after peripheral injury. The Journal of comparative neurology 404:64-74.
Gonzalez-Hernandez T, Rustioni A (1999b) Expression of three forms of nitric oxide synthase in peripheral nerve regeneration. Journal of neuroscience research 55:198-207.
Goussev S, Hsu JY, Lin Y, Tjoa T, Maida N, Werb Z, Noble-Haeusslein LJ (2003) Differential temporal expression of matrix metalloproteinases after spinal cord injury: relationship to revascularization and wound healing. Journal of neurosurgery 99:188-197.
Grass S, Crawley JN, Xu XJ, Wiesenfeld-Hallin Z (2003) Reduced spinal cord sensitization to C-fibre stimulation in mice over-expressing galanin. The European journal of neuroscience 17:1829-1832.
Guan Y, Yaster M, Raja SN, Tao YX (2007) Genetic knockout and pharmacologic inhibition of neuronal nitric oxide synthase attenuate nerve injury-induced mechanical hypersensitivity in mice. Molecular pain 3:29.
Gustafson EL, Smith KE, Durkin MM, Gerald C, Branchek TA (1996) Distribution of a rat galanin receptor mRNA in rat brain. Neuroreport 7:953-957.
Hökfelt T (2005) Galanin and its receptors: introduction to the Third International Symposium, San Diego, California, USA, 21-22 October 2004. Neuropeptides 39:125-142.
Hökfelt T, Wiesenfeld-Hallin Z, Villar M, Melander T (1987) Increase of galanin-like immunoreactivity in rat dorsal root ganglion cells after peripheral axotomy. Neuroscience letters 83:217-220.
Hökfelt T BT, Crawley JC (1998) Galanin: Basic Research Discoveries and Therapeutic Implications. Proceedings of a conference. Stockholm, Sweden, May 3-5, 1998. Annals of the New York Academy of Sciences 863:1-469.
Habert-Ortoli E, Amiranoff B, Loquet I, Laburthe M, Mayaux JF (1994) Molecular cloning of a functional human galanin receptor. Proceedings of the National Academy of Sciences of the United States of America 91:9780-9783.
Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77-88.
Hatch RJ, Jennings EA, Ivanusic JJ (2013) Peripheral hyperpolarization-activated cyclic nucleotide-gated channels contribute to inflammation-induced hypersensitivity of the rat temporomandibular joint. European journal of pain 17:972-982.
Hawes JJ, Narasimhaiah R, Picciotto MR (2006) Galanin and galanin-like peptide modulate neurite outgrowth via protein kinase C-mediated activation of extracellular signal-related kinase. The European journal of neuroscience 23:2937-2946.
Hervera A, Negrete R, Leanez S, Martin-Campos J, Pol O (2010) The role of nitric oxide in the local antiallodynic and antihyperalgesic effects and expression of delta-opioid and cannabinoid-2 receptors during neuropathic pain in mice. The Journal of pharmacology and experimental therapeutics 334:887-896.
Hobson SA, Holmes FE, Kerr NC, Pope RJ, Wynick D (2006) Mice deficient for galanin receptor 2 have decreased neurite outgrowth from adult sensory neurons and impaired pain-like behaviour. Journal of neurochemistry 99:1000-1010.
Hollenberg MD, Saifeddine M, Al-Ani B, Gui Y (1999) Proteinase-activated receptor 4 (PAR4): action of PAR4-activating peptides in vascular and gastric tissue and lack of cross-reactivity with PAR1 and PAR2. Canadian journal of physiology and pharmacology 77:458-464.
Holmes FE, Mahoney SA, Wynick D (2005) Use of genetically engineered transgenic mice to investigate the role of galanin in the peripheral nervous system after injury. Neuropeptides 39:191-199.
Holmes FE, Bacon A, Pope RJ, Vanderplank PA, Kerr NC, Sukumaran M, Pachnis V, Wynick D (2003) Transgenic overexpression of galanin in the dorsal root ganglia modulates pain-related behavior. Proceedings of the National Academy of Sciences of the United States of America 100:6180-6185.
Holzer P (1998) Neurogenic vasodilatation and plasma leakage in the skin. General pharmacology 30:5-11.
Honore P, Kage K, Mikusa J, Watt AT, Johnston JF, Wyatt JR, Faltynek CR, Jarvis MF, Lynch K (2002) Analgesic profile of intrathecal P2X(3) antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain 99:11-19.
Howard AD, Tan C, Shiao LL, Palyha OC, McKee KK, Weinberg DH, Feighner SD, Cascieri MA, Smith RG, Van Der Ploeg LH, Sullivan KA (1997) Molecular cloning and characterization of a new receptor for galanin. FEBS letters 405:285-290.
Hsu WC, Chiu YH, Chiu HC, Liou HH, Jeng YC, Chen TH (2005) Two-stage community-based screening model for estimating prevalence of diabetic polyneuropathy (KCIS no. 6). Neuroepidemiology 25:1-7.
Huang ZJ, Li HC, Cowan AA, Liu S, Zhang YK, Song XJ (2012) Chronic compression or acute dissociation of dorsal root ganglion induces cAMP-dependent neuronal hyperexcitability through activation of PAR2. Pain 153:1426-1437.
Hulse RP, Donaldson LF, Wynick D (2012) Differential roles of galanin on mechanical and cooling responses at the primary afferent nociceptor. Molecular pain 8:41.
Hunt SP, Pini A, Evan G (1987) Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328:632-634.
Imbe H, Abe T, Okamoto K, Sato M, Ito H, Kumabe S, Senba E (2004) Increase of galanin-like immunoreactivity in rat hypothalamic arcuate neurons after peripheral nerve injury. Neuroscience letters 368:102-106.
Immke DC, McCleskey EW (2001a) ASIC3: a lactic acid sensor for cardiac pain. TheScientificWorldJournal 1:510-512.
Immke DC, McCleskey EW (2001b) Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nature neuroscience 4:869-870.
Intondi AB, Dahlgren MN, Eilers MA, Taylor BK (2008) Intrathecal neuropeptide Y reduces behavioral and molecular markers of inflammatory or neuropathic pain. Pain 137:352-365.
Jankowska E, Rastad J, Zarzecki P (1979) Segmental and supraspinal input to cells of origin of non-primary fibres in the feline dorsal columns. The Journal of physiology 290:185-200.
Ji RR, Xu ZZ, Wang X, Lo EH (2009) Matrix metalloprotease regulation of neuropathic pain. Trends in pharmacological sciences 30:336-340.
Ji RR, Zhang Q, Bedecs K, Arvidsson J, Zhang X, Xu XJ, Wiesenfeld-Hallin Z, Bartfai T, Hokfelt T (1994) Galanin antisense oligonucleotides reduce galanin levels in dorsal root ganglia and induce autotomy in rats after axotomy. Proceedings of the National Academy of Sciences of the United States of America 91:12540-12543.
Kask K, Langel U, Bartfai T (1995) Galanin--a neuropeptide with inhibitory actions. Cellular and molecular neurobiology 15:653-673.
Kask K, Berthold M, Bartfai T (1997) Galanin receptors: involvement in feeding, pain, depression and Alzheimer''s disease. Life sciences 60:1523-1533.
Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, Gao YJ, Roy K, Corfas G, Lo EH, Ji RR (2008) Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nature medicine 14:331-336.
Kobayashi H, Chattopadhyay S, Kato K, Dolkas J, Kikuchi S, Myers RR, Shubayev VI (2008) MMPs initiate Schwann cell-mediated MBP degradation and mechanical nociception after nerve damage. Molecular and cellular neurosciences 39:619-627.
Kubo Y, Baldwin TJ, Jan YN, Jan LY (1993) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127-133.
Landry M, Aman K, Dostrovsky J, Lozano AM, Carlstedt T, Spenger C, Josephson A, Wiesenfeld-Hallin Z, Hokfelt T (2003) Galanin expression in adult human dorsal root ganglion neurons: initial observations. Neuroscience 117:795-809.
Lang R, Gundlach AL, Kofler B (2007) The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacology & therapeutics 115:177-207.
Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. The journal of pain : official journal of the American Pain Society 10:895-926.
Lee DH, Chang L, Sorkin LS, Chaplan SR (2005) Hyperpolarization-activated, cation-nonselective, cyclic nucleotide-modulated channel blockade alleviates mechanical allodynia and suppresses ectopic discharge in spinal nerve ligated rats. The journal of pain : official journal of the American Pain Society 6:417-424.
Li J, Zhang JJ, Xu SL, Yu LC (2012) Antinociceptive effects induced by injection of the galanin receptor 1 agonist M617 into central nucleus of amygdala in rats. Neuroscience letters 526:45-48.
Lin CT, Wang HY, Tsai YJ, Huang CT, Chen SH, Lue JH (2009) Pre-treatment with lidocaine suppresses ectopic discharges and attenuates neuropeptide Y and c-Fos expressions in the rat cuneate nucleus following median nerve transection. Journal of chemical neuroanatomy 38:47-56.
Lin CT, Tsai YJ, Chen SH, Wang HY, Lin LH, Lue JH (2010) Early expression of injury-induced neuropeptide Y in primary sensory neurons and the cuneate nucleus in diabetic rats with median nerve transection. Journal of chemical neuroanatomy 40:102-111.
Lin CT, Tsai YJ, Wang HY, Chen SH, Lin TY, Lue JH (2012) Pre-emptive treatment of lidocaine attenuates neuropathic pain and reduces pain-related biochemical markers in the rat cuneate nucleus in median nerve chronic constriction injury model. Anesthesiology research and practice 2012:921405.
Liu HX, Brumovsky P, Schmidt R, Brown W, Payza K, Hodzic L, Pou C, Godbout C, Hokfelt T (2001) Receptor subtype-specific pronociceptive and analgesic actions of galanin in the spinal cord: selective actions via GalR1 and GalR2 receptors. Proceedings of the National Academy of Sciences of the United States of America 98:9960-9964.
Liu W, Hirata K, Kawabuchi M (2005) The occurrence of nitric oxide synthase-containing axonal baskets surrounding large neurons in rat dorsal root ganglia after sciatic nerve ligation. Archives of histology and cytology 68:29-40.
Loong SC (1977) The carpal tunnel syndrome: a clinical and electrophysiological study of 250 patients. Clin Exp Neurol 14:51-65.
Lue JH, Shieh JY, Wen CY, Chen KN, Chan SA (1994) GABAergic boutons establish synaptic contacts with the soma and dendrites of cuneothalamic relay neurons in the rat cuneate nucleus. Experimental brain research 98:13-20.
Lue JH, Leong SM, Day AS, Tsai YJ, Shieh JY, Wen CY (2002) Changes in c-Fos protein expression in the rat cuneate nucleus after electric stimulation of the transected median nerve. Journal of neurotrauma 19:897-907.
Luo L, Chang L, Brown SM, Ao H, Lee DH, Higuera ES, Dubin AE, Chaplan SR (2007) Role of peripheral hyperpolarization-activated cyclic nucleotide-modulated channel pacemaker channels in acute and chronic pain models in the rat. Neuroscience 144:1477-1485.
Ma S, Cornford ME, Vahabnezhad I, Wei S, Li X (2000) Responses of nitric oxide synthase expression in the gracile nucleus to sciatic nerve injury in young and aged rats. Brain research 855:124-131.
Ma W, Bisby MA (1997) Differential expression of galanin immunoreactivities in the primary sensory neurons following partial and complete sciatic nerve injuries. Neuroscience 79:1183-1195.
Ma W, Bisby MA (1998) Partial and complete sciatic nerve injuries induce similar increases of neuropeptide Y and vasoactive intestinal peptide immunoreactivities in primary sensory neurons and their central projections. Neuroscience 86:1217-1234.
Ma W, Bisby MA (1999) Ultrastructural localization of increased neuropeptide immunoreactivity in the axons and cells of the gracile nucleus following chronic constriction injury of the sciatic nerve. Neuroscience 93:335-348.
Ma W, Bisby MA (2000) Partial sciatic nerve ligation induced more dramatic increase of neuropeptide Y immunoreactive axonal fibers in the gracile nucleus of middle-aged rats than in young adult rats. Journal of neuroscience research 60:520-530.
Mahoney SA, Hosking R, Farrant S, Holmes FE, Jacoby AS, Shine J, Iismaa TP, Scott MK, Schmidt R, Wynick D (2003) The second galanin receptor GalR2 plays a key role in neurite outgrowth from adult sensory neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 23:416-421.
Marchand JE, Cepeda MS, Carr DB, Wurm WH, Kream RM (1999) Alterations in neuropeptide Y, tyrosine hydroxylase, and Y-receptor subtype distribution following spinal nerve injury to rats. Pain 79:187-200.
Maslany S, Crockett DP, Egger MD (1991) Somatotopic organization of the dorsal column nuclei in the rat: transganglionic labelling with B-HRP and WGA-HRP. Brain research 564:56-65.
Maslany S, Crockett DP, Egger MD (1992) The cuneate nucleus in the rat does have an anatomically distinct middle region. Neuroscience letters 139:130-134.
Matzner O, Devor M (1994) Hyperexcitability at sites of nerve injury depends on voltage-sensitive Na+ channels. Journal of neurophysiology 72:349-359.
McNeill DL, Chung K, Carlton SM, Coggeshall RE (1988) Calcitonin gene-related peptide immunostained axons provide evidence for fine primary afferent fibers in the dorsal and dorsolateral funiculi of the rat spinal cord. The Journal of comparative neurology 272:303-308.
Meller ST, Dykstra C, Gebhart GF (1992) Production of endogenous nitric oxide and activation of soluble guanylate cyclase are required for N-methyl-D-aspartate-produced facilitation of the nociceptive tail-flick reflex. European journal of pharmacology 214:93-96.
Metcalf CS, Klein BD, McDougle DR, Zhang L, Smith MD, Bulaj G, White HS (2015) Analgesic properties of a peripherally acting and GalR2 receptor-preferring galanin analog in inflammatory, neuropathic, and acute pain models. The Journal of pharmacology and experimental therapeutics 352:185-193.
Miclescu A, Gordh T (2009) Nitric oxide and pain: ''Something old, something new''. Acta anaesthesiologica Scandinavica 53:1107-1120.
Milligan CJ, Edwards IJ, Deuchars J (2006) HCN1 ion channel immunoreactivity in spinal cord and medulla oblongata. Brain research 1081:79-91.
Mitchell V, Habert-Ortoli E, Epelbaum J, Aubert JP, Beauvillain JC (1997) Semiquantitative distribution of galanin-receptor (GAL-R1) mRNA-containing cells in the male rat hypothalamus. Neuroendocrinology 66:160-172.
Mogil JS, Breese NM, Witty MF, Ritchie J, Rainville ML, Ase A, Abbadi N, Stucky CL, Seguela P (2005) Transgenic expression of a dominant-negative ASIC3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli. The Journal of neuroscience : the official journal of the Society for Neuroscience 25:9893-9901.
Molander C, Hongpaisan J, Grant G (1992) Changing pattern of c-FOS expression in spinal cord neurons after electrical stimulation of the chronically injured sciatic nerve in the rat. Neuroscience 50:223-236.
Molander C, Hongpaisan J, Persson JK (1994) Distribution of c-fos expressing dorsal horn neurons after electrical stimulation of low threshold sensory fibers in the chronically injured sciatic nerve. Brain research 644:74-82.
Moncada S, Bolanos JP (2006) Nitric oxide, cell bioenergetics and neurodegeneration. Journal of neurochemistry 97:1676-1689.
Morgan JI, Curran T (1989) Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends in neurosciences 12:459-462.
Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annual review of neuroscience 14:421-451.
Morris R, Southam E, Braid DJ, Garthwaite J (1992) Nitric oxide may act as a messenger between dorsal root ganglion neurones and their satellite cells. Neuroscience letters 137:29-32.
Nakagawa T, Wakamatsu K, Zhang N, Maeda S, Minami M, Satoh M, Kaneko S (2007) Intrathecal administration of ATP produces long-lasting allodynia in rats: differential mechanisms in the phase of the induction and maintenance. Neuroscience 147:445-455.
Naranjo JR, Mellstrom B, Achaval M, Sassone-Corsi P (1991) Molecular pathways of pain: Fos/Jun-mediated activation of a noncanonical AP-1 site in the prodynorphin gene. Neuron 6:607-617.
Nathan PW, Smith MC, Cook AW (1986) Sensory effects in man of lesions of the posterior columns and of some other afferent pathways. Brain : a journal of neurology 109 ( Pt 5):1003-1041.
Newbold P, Brain SD (1993) The modulation of inflammatory oedema by calcitonin gene-related peptide. British journal of pharmacology 108:705-710.
Noguchi K, Kawai Y, Fukuoka T, Senba E, Miki K (1995) Substance P induced by peripheral nerve injury in primary afferent sensory neurons and its effect on dorsal column nucleus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 15:7633-7643.
Novakovic SD, Kassotakis LC, Oglesby IB, Smith JA, Eglen RM, Ford AP, Hunter JC (1999) Immunocytochemical localization of P2X3 purinoceptors in sensory neurons in naive rats and following neuropathic injury. Pain 80:273-282.
Nystedt S, Emilsson K, Wahlestedt C, Sundelin J (1994) Molecular cloning of a potential proteinase activated receptor. Proceedings of the National Academy of Sciences of the United States of America 91:9208-9212.
O''Donnell D, Ahmad S, Wahlestedt C, Walker P (1999) Expression of the novel galanin receptor subtype GALR2 in the adult rat CNS: distinct distribution from GALR1. The Journal of comparative neurology 409:469-481.
Ohara S, Roth KA, Beaudet LN, Schmidt RE (1994) Transganglionic neuropeptide Y response to sciatic nerve injury in young and aged rats. Journal of neuropathology and experimental neurology 53:646-662.
Pannu R, Christie DK, Barbosa E, Singh I, Singh AK (2007) Post-trauma Lipitor treatment prevents endothelial dysfunction, facilitates neuroprotection, and promotes locomotor recovery following spinal cord injury. Journal of neurochemistry 101:182-200.
Pape HC, McCormick DA (1989) Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature 340:715-718.
Parker EM, Izzarelli DG, Nowak HP, Mahle CD, Iben LG, Wang J, Goldstein ME (1995) Cloning and characterization of the rat GALR1 galanin receptor from Rin14B insulinoma cells. Brain research Molecular brain research 34:179-189.
Patterson JT, Head PA, McNeill DL, Chung K, Coggeshall RE (1989) Ascending unmyelinated primary afferent fibers in the dorsal funiculus. The Journal of comparative neurology 290:384-390.
Perney TM, Miller RJ (1989) Two different G-proteins mediate neuropeptide Y and bradykinin-stimulated phospholipid breakdown in cultured rat sensory neurons. The Journal of biological chemistry 264:7317-7327.
Price MP, McIlwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071-1083.
Racz GB, McCarron RF, Talboys P (1989) Percutaneous dorsal column stimulator for chronic pain control. Spine 14:1-4.
Rattan S (1991) Role of galanin in the gut. Gastroenterology 100:1762-1768.
Robinson JK, Brewer A (2008) Galanin: a potential role in mesolimbic dopamine-mediated instrumental behavior. Neuroscience and biobehavioral reviews 32:1485-1493.
Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annual review of physiology 65:453-480.
Rosenberg GA (2002) Matrix metalloproteinases in neuroinflammation. Glia 39:279-291.
Santoro B, Grant SG, Bartsch D, Kandel ER (1997) Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to eag and cyclic nucleotide-gated channels. Proceedings of the National Academy of Sciences of the United States of America 94:14815-14820.
Sapunar D, Vukojevic K, Kostic S, Puljak L (2011) Attenuation of pain-related behavior evoked by injury through blockade of neuropeptide Y Y2 receptor. Pain 152:1173-1181.
Shealy CN, Mortimer JT, Hagfors NR (1970) Dorsal column electroanalgesia. Journal of neurosurgery 32:560-564.
Shi TJ, Holmberg K, Xu ZQ, Steinbusch H, de Vente J, Hokfelt T (1998) Effect of peripheral nerve injury on cGMP and nitric oxide synthase levels in rat dorsal root ganglia: time course and coexistence. Pain 78:171-180.
Shortland P, Molander C (1998) The time-course of abeta-evoked c-fos expression in neurons of the dorsal horn and gracile nucleus after peripheral nerve injury. Brain research 810:288-293.
Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Annual review of neuroscience 21:127-148.
Smith KE, Walker MW, Artymyshyn R, Bard J, Borowsky B, Tamm JA, Yao WJ, Vaysse PJ, Branchek TA, Gerald C, Jones KA (1998) Cloned human and rat galanin GALR3 receptors. Pharmacology and activation of G-protein inwardly rectifying K+ channels. The Journal of biological chemistry 273:23321-23326.
Spiegelmann R, Friedman WA (1991) Spinal cord stimulation: a contemporary series. Neurosurgery 28:65-70; discussion 70-61.
Steinhoff M, Vergnolle N, Young SH, Tognetto M, Amadesi S, Ennes HS, Trevisani M, Hollenberg MD, Wallace JL, Caughey GH, Mitchell SE, Williams LM, Geppetti P, Mayer EA, Bunnett NW (2000) Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nature medicine 6:151-158.
Sten Shi TJ, Zhang X, Holmberg K, Xu ZQ, Hokfelt T (1997) Expression and regulation of galanin-R2 receptors in rat primary sensory neurons: effect of axotomy and inflammation. Neuroscience letters 237:57-60.
Stoll G, Jander S, Myers RR (2002) Degeneration and regeneration of the peripheral nervous system: from Augustus Waller''s observations to neuroinflammation. Journal of the peripheral nervous system : JPNS 7:13-27.
Sun YG, Yu LC (2005) Interactions of galanin and opioids in nociceptive modulation in the arcuate nucleus of hypothalamus in rats. Regulatory peptides 124:37-43.
Tal M, Bennett GJ (1994) Extra-territorial pain in rats with a peripheral mononeuropathy: mechano-hyperalgesia and mechano-allodynia in the territory of an uninjured nerve. Pain 57:375-382.
Tamatani M, Senba E, Tohyama M (1989) Calcitonin gene-related peptide- and substance P-containing primary afferent fibers in the dorsal column of the rat. Brain research 495:122-130.
Tatemoto K, Rokaeus A, Jornvall H, McDonald TJ, Mutt V (1983) Galanin - a novel biologically active peptide from porcine intestine. FEBS letters 164:124-128.
Thippeswamy T, Morris R (1997) Cyclic guanosine 3'',5''-monophosphate-mediated neuroprotection by nitric oxide in dissociated cultures of rat dorsal root ganglion neurones. Brain research 774:116-122.
Thippeswamy T, McKay JS, Morris R (2001a) Bax and caspases are inhibited by endogenous nitric oxide in dorsal root ganglion neurons in vitro. The European journal of neuroscience 14:1229-1236.
Thippeswamy T, Jain RK, Mumtaz N, Morris R (2001b) Inhibition of neuronal nitric oxide synthase results in neurodegenerative changes in the axotomised dorsal root ganglion neurons: evidence for a neuroprotective role of nitric oxide in vivo. Neuroscience research 40:37-44.
Tracey DJ, Romm MA, Yao NN (1995) Peripheral hyperalgesia in experimental neuropathy: exacerbation by neuropeptide Y. Brain research 669:245-254.
Tsai YJ, Lin CT, Lue JH (2007) Characterization of the induced neuropeptide Y-like immunoreactivity in primary sensory neurons following complete median nerve transection. Journal of neurotrauma 24:1878-1888.
Tsai YJ, Leong SM, Day AS, Wen CY, Shieh JY, Lue JH (2004) A time course analysis of the changes in neuropeptide Y immunoreactivity in the rat cuneate nucleus following median nerve transection. Neuroscience research 48:369-377.
Tsai YJ, Lin CT, Huang CT, Wang HY, Tien LT, Chen SH, Lue JH (2009) Neuropeptide Y modulates c-Fos protein expression in the cuneate nucleus and contributes to mechanical hypersensitivity following rat median nerve injury. Journal of neurotrauma 26:1609-1621.
Verge VM, Xu XJ, Langel U, Hokfelt T, Wiesenfeld-Hallin Z, Bartfai T (1993) Evidence for endogenous inhibition of autotomy by galanin in the rat after sciatic nerve section: demonstrated by chronic intrathecal infusion of a high affinity galanin receptor antagonist. Neuroscience letters 149:193-197.
Villar MJ, Cortes R, Theodorsson E, Wiesenfeld-Hallin Z, Schalling M, Fahrenkrug J, Emson PC, Hokfelt T (1989) Neuropeptide expression in rat dorsal root ganglion cells and spinal cord after peripheral nerve injury with special reference to galanin. Neuroscience 33:587-604.
Villiere V, McLachlan EM (1996) Electrophysiological properties of neurons in intact rat dorsal root ganglia classified by conduction velocity and action potential duration. Journal of neurophysiology 76:1924-1941.
Voilley N, de Weille J, Mamet J, Lazdunski M (2001) Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. The Journal of neuroscience : the official journal of the Society for Neuroscience 21:8026-8033.
Vu TK, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64:1057-1068.
Vulchanova L, Riedl MS, Shuster SJ, Buell G, Surprenant A, North RA, Elde R (1997) Immunohistochemical study of the P2X2 and P2X3 receptor subunits in rat and monkey sensory neurons and their central terminals. Neuropharmacology 36:1229-1242.
Wakisaka S, Kajander KC, Bennett GJ (1992) Effects of peripheral nerve injuries and tissue inflammation on the levels of neuropeptide Y-like immunoreactivity in rat primary afferent neurons. Brain research 598:349-352.
Waldmann R, Lazdunski M (1998) H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Current opinion in neurobiology 8:418-424.
Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386:173-177.
Wall PD, Devor M, Inbal R, Scadding JW, Schonfeld D, Seltzer Z, Tomkiewicz MM (1979) Autotomy following peripheral nerve lesions: experimental anaesthesia dolorosa. Pain 7:103-111.
Wang D, Ye HH, Yu LC, Lundeberg T (1999) Intra-periaqueductal grey injection of galanin increases the nociceptive response latency in rats, an effect reversed by naloxone. Brain research 834:152-154.
Wang HY, Tsai YJ, Chen SH, Lin CT, Lue JH (2012a) Nitric oxide implicates c-Fos expression in the cuneate nucleus following electrical stimulation of the transected median nerve. Neurochemical research 37:84-95.
Wang S, Clemmons A, Bayne M, Graziano MP (1998a) Retrovirus-mediated expression of the GalR1 galanin receptor: implication for efficient stable expression of functional G protein-coupled receptors. Journal of receptor and signal transduction research 18:311-320.
Wang S, Hashemi T, He C, Strader C, Bayne M (1997) Molecular cloning and pharmacological characterization of a new galanin receptor subtype. Molecular pharmacology 52:337-343.
Wang S, Hashemi T, Fried S, Clemmons AL, Hawes BE (1998b) Differential intracellular signaling of the GalR1 and GalR2 galanin receptor subtypes. Biochemistry 37:6711-6717.
Wang S, Dai Y, Kobayashi K, Zhu W, Kogure Y, Yamanaka H, Wan Y, Zhang W, Noguchi K (2012b) Potentiation of the P2X3 ATP receptor by PAR-2 in rat dorsal root ganglia neurons, through protein kinase-dependent mechanisms, contributes to inflammatory pain. The European journal of neuroscience 36:2293-2301.
Wang TJ, Lue JH, Shieh JY, Wen CY (2001) The distribution and characterization of NADPH-d/NOS-IR neurons in the rat cuneate nucleus. Brain research 910:38-48.
Wang TJ, Lue JH, Wu CH, Shieh JY, Wen CY (2002) Neurogenesis of cuneothalamic neurons and NO-containing neurons in the cuneate nucleus of the rat. Experimental brain research 142:327-334.
Wei B, Kumada T, Furukawa T, Inoue K, Watanabe M, Sato K, Fukuda A (2013) Pre- and post-synaptic switches of GABA actions associated with Cl- homeostatic changes are induced in the spinal nucleus of the trigeminal nerve in a rat model of trigeminal neuropathic pain. Neuroscience 228:334-348.
Wells JE, Rowland KC, Proctor EK (2007) Hyperpolarization-activated channels in trigeminal ganglia innervating healthy and pulp-exposed teeth. International endodontic journal 40:715-721.
Wiesenfeld-Hallin Z, Villar MJ, Hokfelt T (1988) Intrathecal galanin at low doses increases spinal reflex excitability in rats more to thermal than mechanical stimuli. Experimental brain research 71:663-666.
Wiesenfeld-Hallin Z, Villar MJ, Hokfelt T (1989) The effects of intrathecal galanin and C-fiber stimulation on the flexor reflex in the rat. Brain research 486:205-213.
Wiesenfeld-Hallin Z, Bartfai T, Hokfelt T (1992a) Galanin in sensory neurons in the spinal cord. Frontiers in neuroendocrinology 13:319-343.
Wiesenfeld-Hallin Z, Xu XJ, Langel U, Bedecs K, Hokfelt T, Bartfai T (1992b) Galanin-mediated control of pain: enhanced role after nerve injury. Proceedings of the National Academy of Sciences of the United States of America 89:3334-3337.
Wiley JW, Gross RA, MacDonald RL (1993) Agonists for neuropeptide Y receptor subtypes NPY-1 and NPY-2 have opposite actions on rat nodose neuron calcium currents. Journal of neurophysiology 70:324-330.
Wood PL, Emmett MR, Rao TS, Cler J, Mick S, Iyengar S (1990) Inhibition of nitric oxide synthase blocks N-methyl-D-aspartate-, quisqualate-, kainate-, harmaline-, and pentylenetetrazole-dependent increases in cerebellar cyclic GMP in vivo. Journal of neurochemistry 55:346-348.
Woolf CJ, Doubell TP (1994) The pathophysiology of chronic pain--increased sensitivity to low threshold A beta-fibre inputs. Current opinion in neurobiology 4:525-534.
Woolf CJ, Mannion RJ (1999) Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353:1959-1964.
Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765-1769.
Xu GY, Huang LY (2002) Peripheral inflammation sensitizes P2X receptor-mediated responses in rat dorsal root ganglion neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 22:93-102.
Zanette G, Marani S, Tamburin S (2007) Proximal pain in patients with carpal tunnel syndrome: a clinical-neurophysiological study. Journal of the peripheral nervous system : JPNS 12:91-97.
Zhang X, Meister B, Elde R, Verge VM, Hokfelt T (1993a) Large calibre primary afferent neurons projecting to the gracile nucleus express neuropeptide Y after sciatic nerve lesions: an immunohistochemical and in situ hybridization study in rats. The European journal of neuroscience 5:1510-1519.
Zhang X, Verge V, Wiesenfeld-Hallin Z, Ju G, Bredt D, Synder SH, Hokfelt T (1993b) Nitric oxide synthase-like immunoreactivity in lumbar dorsal root ganglia and spinal cord of rat and monkey and effect of peripheral axotomy. The Journal of comparative neurology 335:563-575.
Zhang X, Xu ZO, Shi TJ, Landry M, Holmberg K, Ju G, Tong YG, Bao L, Cheng XP, Wiesenfeld-Hallin Z, Lozano A, Dostrovsky J, Hokfelt T (1998) Regulation of expression of galanin and galanin receptors in dorsal root ganglia and spinal cord after axotomy and inflammation. Annals of the New York Academy of Sciences 863:402-413.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top