跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/02 15:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王邦丞
研究生(外文):Bang-Cheng Wang
論文名稱:基於同時調整多策略以最佳化零力矩點軌跡實現人型機器人之行走平衡
論文名稱(外文):Future ZMP Trajectory Optimization with Simultaneous Multi-Strategy Adjustment for Humanoid Walking Balance
指導教授:王傑智
指導教授(外文):Chieh-Chih Wang
口試委員:宋開泰郭振華林沛群
口試委員(外文):Kai-Tai SongJen-Hwa GuoPei-Chun Lin
口試日期:2014-12-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:40
中文關鍵詞:人型機器人走路零力矩點
外文關鍵詞:HumanoidWalkingZMP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人形機器人走路時一件富有挑戰性的控制問題。現今研究已發現可以基於調整控制輸入、步伐大小和步伐長度三種策略的未來零力矩點(Zero-Moment Point)軌跡來增進機器人平衡。然而,我們發現現今方法由於未考慮多策略之間的相互關係,因此增進平衡的能力是受限制的。在此論文中,我們分析多策略之間的相互關係,並且提出基於同時調整多策略以最佳化零力矩點軌跡實現人型機器人之行走平衡,而最佳化未來零力矩點軌跡是透過最佳化能量函數所產生的。最後,本研究與現今頂尖的零力矩點軌跡調整方法比較,並證明此演算法能夠讓機器人在更艱難條件下維持平衡。

Humanoid walking balance has been a challenging issue in the control field since the balance can only be achieved by considering the dynamics of the system. It is found that the modification of the future ZMP trajectory based on the multiple strategies, which are the adjustment of the control input, the step size and the step duration, can enhance the robot balance. However, the capacity of the disturbance compensation is limited due to the fact that the correlation among the strategies is not considered. In this work, the correlation among the three strategies is analyzed, and the future ZMP trajectory optimization with simultaneous multi-strategy adjustment for humanoid walking balance is proposed. After defining an energy function for the robot balance, an optimized trajectory based on the simultaneous adjustment is generated. By comparing our work with the state-of-the-art future ZMP trajectory modification approaches, it is shown that our approach can maintain the robot balance under more severe situations.

ABSTRACT : ii
LIST OF FIGURES : iv
LIST OF TABLES : v
CHAPTER 1. Introduction : 1
CHAPTER 2. RelatedWork : 4
CHAPTER 3. Foundation : 7
3.1. Optimal Control based on Linear Inverted Pendulum Mode : 7
3.2. Non-divergent Condition : 11
3.3. Three Strategies for Maintaining Robot Balance : 13
CHAPTER 4. Trajectory Optimization with Simultaneous Multi-Strategy Adjustment : 14
4.1. Correspondence between the Future ZMP Trajectory and the Three Strategies : 14
4.2. Correlation among the Three Strategies : 16
4.3. Trajectory Optimization with Simultaneous Multi-Strategy Adjustment : 20
4.4. Comparison with the Three-strategy-based and the Heuristic-strategy-based Approaches : 25
CHAPTER 5. Experiment Result : 28
5.1. Simulation Experiment : 28
5.1.1. Configuration of the Simulated Humanoid Robot : 28
5.1.2. Experiment with Various Cycles of Disturbance : 29
5.2. Real Environment Experiment : 33
CHAPTER 6. Conclusion and Future Work : 37
BIBLIOGRAPHY : 38

Alcaraz-Jiménez, J. J., Herrero-Pérez, D., & Martínez-Barberá, H. (2013). Robust feedback control of ZMP-based gait for the humanoid robot Nao. The International Journal of Robotics Research, 32(9-10), 1074–1088.

Czarnetzki, S., Kerner, S., & Urbann, O. (2009). Observer-based dynamic walking control for biped robots. Robotics and Autonomous Systems, 57(8), 839–845.

Englsberger, J., Ott, C., Roa, M. A., Albu-Schaffer, A., & Hirzinger, G. (2011). Bipedal walking control based on capture point dynamics. In IEEE/RSJ International Conference on Intelligent Robots and Systems, (pp. 4420–4427).

Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B., Serre, J., & Maisonnier, B. (2009). Mechatronic design of NAO humanoid. In IEEE International Conference on Robotics and Automation, (pp. 769–774).

Graf, C., Härtl, A., Röfer, T., & Laue, T. (2009). A robust closed-loop gait for the Standard Platform League humanoid. In Proceedings of the Fourth Workshop on Humanoid Soccer Robots in conjunction with the 2009 IEEE-RAS International Conference on Humanoid Robots, (pp. 30–37).

Graf, C. & Röfer, T. (2012). A center of mass observing 3D-LIPM gait for the RoboCup Standard Platform League humanoid. In RoboCup 2011: Robot Soccer World Cup XV (pp. 102–113). Springer.

Hirai, K., Hirose, M., Haikawa, Y., & Takenaka, T. (1998). The development of Honda humanoid robot. In IEEE International Conference on Robotics and Automation, volume 2, (pp. 1321–1326).

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003). Biped walking pattern generation by using preview control of zero-moment point. In IEEE International Conference on Robotics and Automation, volume 2, (pp. 1620–1626).

Kajita, S., Matsumoto, O., & Saigo, M. (2001). Real-time 3D walking pattern generation for a biped robot with telescopic legs. In IEEE International Conference on Robotics and Automation, volume 3, (pp. 2299–2306).

Kajita, S., Morisawa, M., Harada, K., Kaneko, K., Kanehiro, F., Fujiwara, K., & Hirukawa, H. (2006). Biped walking pattern generator allowing auxiliary ZMP control. In IEEE/RSJ International Conference on Intelligent Robots and Systems, (pp. 2993–2999).

Kajita, S., Morisawa, M., Miura, K., Nakaoka, S., Harada, K., Kaneko, K., Kanehiro, F., & Yokoi, K. (2010). Biped walking stabilization based on linear inverted pendulum tracking. In IEEE/RSJ International Conference on Intelligent Robots and Systems, (pp. 4489–4496).

Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H., Kawasaki, T., Hirata, M., Akachi, K., & Isozumi, T. (2004). Humanoid robot HRP-2. In IEEE International Conference on Robotics and Automation, volume 2, (pp. 1083–1090).

Katayama, T., Ohki, T., Inoue, T., & Kato, T. (1985). Design of an optimal controller for a discrete-time system subject to previewable demand. International Journal of Control, 41(3), 677–699.

Morisawa, M., Kanehiro, F., Kaneko, K., Kajita, S., & Yokoi, K. (2011). Reactive biped walking control for a collision of a swinging foot on uneven terrain. In IEEE-RAS International Conference on Humanoid Robots, (pp. 768–773).

Morisawa, M., Kanehiro, F., Kaneko, K., Mansard, N., Sola, J., Yoshida, E., Yokoi, K., & Laumond, J.-P. (2010). Combining suppression of the disturbance and reactive stepping for recovering balance. In IEEE/RSJ International Conference on Intelligent Robots and Systems, (pp. 3150–3156).

Nishiwaki, K. & Kagami, S. (2010). Strategies for adjusting the ZMP reference trajectory for maintaining balance in humanoid walking. In IEEE International Conference on Robotics and Automation, (pp. 4230–4236).

Nishiwaki, K. & Kagami, S. (2011). Simultaneous planning of CoM and ZMP based on the preview control method for online walking control. In IEEE-RAS International Conference on Humanoid Robots, (pp. 745–751).

Nishiwaki, K. & Kagami, S. (2012). Trajectory design and control of edge-landing walking of a humanoid for higher adaptability to rough terrain. In Conference on Intelligent Robots and Systems, (pp. 3432–3439).

Pratt, J., Carff, J., Drakunov, S., & Goswami, A. (2006). Capture Point: A step toward humanoid push recovery. In IEEE-RAS International Conference on Humanoid Robots, (pp. 200–207).

Santacruz, C. & Nakamura, Y. (2013). Reactive stepping strategies for bipedal walking based on neutral point and boundary condition optimization. In IEEE International Conference on Robotics and Automation, (pp. 3110–3115).

Sugihara, T. (2009). Standing stabilizability and stepping maneuver in planar bipedalism based on the best COM-ZMP regulator. In IEEE International Conference on Robotics and Automation, (pp. 1966–1971).

Urata, J., Nshiwaki, K., Nakanishi, Y., Okada, K., Kagami, S., & Inaba, M. (2011). Online decision of foot placement using singular LQ preview regulation. In IEEE-RAS International Conference on Humanoid Robots, (pp. 13–18).

Urata, J., Nshiwaki, K., Nakanishi, Y., Okada, K., Kagami, S., & Inaba, M. (2012). Online walking pattern generation for push recovery and minimum delay to commanded change of direction and speed. In IEEE/RSJ International Conference on Intelligent Robots and Systems, (pp. 3411–3416).

Urbann, O. & Hofmann, M. (2014). Modification of Foot Placement for Balancing Using a
Preview Controller Based Humanoid Walking Algorithm. In RoboCup 2013: Robot World Cup XVII (pp. 420–431). Springer.

Vukobratovic, M., Frank, A., & Juricic, D. (1970). On the stability of biped locomotion. IEEE Transactions on Biomedical Engineering, (1), 25–36.

Xue, F., Chen, X., Liu, J., & Nardi, D. (2012). Real time biped walking gait pattern generator for a real robot. In RoboCup 2011: Robot Soccer World Cup XV (pp. 210–221). Springer.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top