跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 03:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施亭屹
研究生(外文):Ting-Yi Shih
論文名稱:協同過濾推薦時增強商品曝光度
論文名稱(外文):Augmenting Item Exposure in Collaborative Filtering
指導教授:鄭卜壬鄭卜壬引用關係
口試委員:陳信希蔡銘峰張嘉惠曾新穆
口試日期:2015-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:42
中文關鍵詞:推薦推薦系統商品曝光度曝光度協同過濾冷開始
外文關鍵詞:recommendationrecommendation systemitem exposureexposurecollaborative filteringcold start
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當新商品 (New item) 的數量成長速度越來越快,推薦系統 (Rec- ommendation system) 就越難兼顧到每一個新商品的曝光度 (Exposure)。 因此,我們提出了一套兩段式的推薦方法,期望能幫助新上架商 品增強曝光的機會。本篇論文所提出的方法有別於以往的協同過濾 (Collaborative Filtering) 推薦,在推薦商品時不僅僅考慮使用者的滿意 度或是商品的品質,也將品質未知的新上架商品推薦給可能願意提供 評價的使用者。我們可透過蒐集得到的評價確認新商品的品質,再決 定是否繼續推廣或抑制新商品。如此一來,我們僅犧牲了一點使用者 收到滿意商品的穩定性,卻換取了所有新上架商品極需的曝光度,讓 他們都有相同的機會被看見。我們的實驗實施在現有的 MovieLens 和 Netflix 資料上,而結果顯示了此種推薦方法的可行性。

New items, e.g., mobile apps and movies, have been growing so fast that most of them cannot get discovered in a recommendation system. We propose a two-stage approach to appropriately promote new items. Different from pre- vious works on Collaborative Filtering (CF), our approach is not based only on item quality or user satisfaction. We force the new items to be promoted to those who would be potentially able to give ratings, and then leverage the gathered user preference to punish the promoted items with low quality in- trinsically. By slightly sacrificing the benefit of recommending the best items in terms of item quality or user satisfaction, our solution seeks to provide all of the items with a chance to be visible equally. The result of the experiments conducted on MovieLens and Netflix data demonstrates the feasibility of the approach.

口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Exposure-augmenting CF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 User Preference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Rating Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Exposure Augmenting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 User Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Exposure-Augmenting Recommendation . . . . . . . . . . . . . . . . . . 15
4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.1 Item Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Exposure and Preference . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Competitive Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Assumptions on Experimental Validity . . . . . . . . . . . . . . . . . . . . 22
4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.1 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.2 RV and Item Exposure . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4.3 Hit Time Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.4 Item Starving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Parameter Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5.1 Unknownness Threshold . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.2 User Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

[1] H. J. Ahn. Utilizing popularity characteristics for product recommendation. Inter- national Journal of Electronic Commerce, pages 59–80, 2006.
[2] H. J. Ahn. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem. Information Sciences, pages 37 – 51, 2008.
[3] O. Celma and P. Cano. From hits to niches?: Or how popular artists can bias mu- sic recommendation and discovery. In Proceedings of the 2Nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition, pages 5:1– 5:8. ACM, 2008.
[4] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. Analyzing the video popularity characteristics of large-scale user generated content systems. IEEE/ACM Trans. Netw., pages 1357–1370, 2009.
[5] C.-M. Chen, H.-P. Chen, M.-F. Tsai, and Y.-H. Yang. Leverage item popularity and recommendation quality via cost-sensitive factorization machines. In Data Mining Workshop (ICDMW), 2014 IEEE International Conference on, pages 1158–1162, 2014.
[6] Y. S. Choi. Content type based adaptation in collaborative recommendation. In Pro- ceedings of the 2014 Conference on Research in Adaptive and Convergent Systems, pages 61–65. ACM, 2014.
38
[7] N. Golbandi, Y. Koren, and R. Lempel. On bootstrapping recommender systems. In
Proceedings of the 19th ACM International Conference on Information and Knowl- edge Management, pages 1805–1808. ACM, 2010.
[8] I.Guy,N.Zwerdling,D.Carmel,I.Ronen,E.Uziel,S.Yogev,andS.Ofek-Koifman. Personalized recommendation of social software items based on social relations. In Proceedings of the Third ACM Conference on Recommender Systems, pages 53–60. ACM, 2009.
[9] A.S.HarpaleandY.Yang.Personalizedactivelearningforcollaborativefiltering.In
Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 91–98. ACM, 2008.
[10] T. Hofmann and J. Puzicha. Latent class models for collaborative filtering. In Pro- ceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pages 688–693. Morgan Kaufmann Publishers Inc., 1999.
[11] M. Jamali and M. Ester. A matrix factorization technique with trust propagation for recommendation in social networks. In Proceedings of the Fourth ACM Conference on Recommender Systems, pages 135–142. ACM, 2010.
[12] Y. Koren. Collaborative filtering with temporal dynamics. Commun. ACM, pages 89–97, 2010.
[13] Y.Koren,R.Bell,andC.Volinsky.Matrixfactorizationtechniquesforrecommender systems. Computer, pages 30–37, 2009.
[14] P. Kotler and K. Keller. Marketing Management. Prentice Hall, 2012.
[15] X. N. Lam, T. Vu, T. D. Le, and A. D. Duong. Addressing cold-start problem in
recommendation systems. In Proceedings of the 2Nd International Conference on 39
Ubiquitous Information Management and Communication, pages 208–211. ACM, 2008.
[16] E. L. Lee, J.-K. Lou, W.-M. Chen, Y.-C. Chen, S.-D. Lin, Y.-S. Chiang, and K.- T. Chen. Fairness-aware loan recommendation for microfinance services. In Pro- ceedings of the 2014 International Conference on Social Computing, pages 3:1–3:4. ACM, 2014.
[17] Z. Lu, D. Agarwal, and I. S. Dhillon. A spatio-temporal approach to collaborative filtering. In Proceedings of the Third ACM Conference on Recommender Systems, pages 13–20. ACM, 2009.
[18] H. Ma, I. King, and M. R. Lyu. Learning to recommend with social trust ensemble. In Proceedings of the 32Nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 203–210. ACM, 2009.
[19] H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: Social recommendation using probabilistic matrix factorization, 2008.
[20] J. Oh, S. Park, H. Yu, M. Song, and S.-T. Park. Novel recommendation based on personal popularity tendency. In Data Mining (ICDM), 2011 IEEE 11th International Conference on, pages 507–516, 2011.
[21] M. P. O’Mahony, N. J. Hurley, and G. C. M. Silvestre. Utility-based neighbourhood formation for efficient and robust collaborative filtering. In Proceedings of the 5th ACM Conference on Electronic Commerce, pages 260–261. ACM, 2004.
[22] S.-T. Park, D. Pennock, O. Madani, N. Good, and D. DeCoste. Naive filterbots for robust cold-start recommendations. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 699– 705. ACM, 2006.
40
[23] S. Sahebi and W. Cohen. Community-based recommendations: a solution to the cold start problem. In Workshop on Recommender Systems and the Social Web (RSWEB), held in conjunction with ACM RecSys?11, 2011.
[24] A.I.Schein,A.Popescul,L.H.Ungar,andD.M.Pennock.Methodsandmetricsfor cold-start recommendations. In Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 253–260. ACM, 2002.
[25] H. Steck. Training and testing of recommender systems on data missing not at ran- dom. In Proceedings of the 16th ACM SIGKDD International Conference on Knowl- edge Discovery and Data Mining, pages 713–722. ACM, 2010.
[26] H.Steck.Itempopularityandrecommendationaccuracy.InProceedingsoftheFifth ACM Conference on Recommender Systems, pages 125–132. ACM, 2011.
[27] D.Sun,Z.Luo,andF.Zhang.Anovelapproachforcollaborativefilteringtoalleviate the new item cold-start problem. In Communications and Information Technologies (ISCIT), 2011 11th International Symposium on, pages 402–406, 2011.
[28] K. Yu, A. Schwaighofer, V. Tresp, X. Xu, and H.-P. Kriegel. Probabilistic memory- based collaborative filtering. IEEE Trans. on Knowl. and Data Eng., 2004.
[29] X. Yu, X. Ren, Q. Gu, Y. Sun, and J. Han. Collaborative filtering with entity simi- larity regularization in heterogeneous information networks, 2013.
[30] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick, and J. Han. Per- sonalized entity recommendation: A heterogeneous information network approach. In Proceedings of the 7th ACM International Conference on Web Search and Data Mining, pages 283–292. ACM, 2014.
41
[31] Q. Yuan, L. Chen, and S. Zhao. Factorization vs. regularization: Fusing hetero- geneous social relationships in top-n recommendation. In Proceedings of the Fifth ACM Conference on Recommender Systems, pages 245–252. ACM, 2011.
[32] R. Zhou, S. Khemmarat, L. Gao, and H. Wang. Boosting video popularity through recommendation systems. In Databases and Social Networks, pages 13–18. ACM, 2011.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top