跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/29 13:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡晉佑
研究生(外文):Chin-yu Chien
論文名稱:支援物件形變偵測之條狀感測器設計
論文名稱(外文):FlexiBend: Designing Shape-Aware Strip for Sensing Deformables
指導教授:陳炳宇陳炳宇引用關係
指導教授(外文):Bing-Yu Chen
口試委員:歐陽明梁容豪
口試委員(外文):Ming OuhyoungLiang Rong-Hao
口試日期:2015-05-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:45
中文關鍵詞:形變感測多部件可變形體感測有形的輸入裝置
外文關鍵詞:shape-aware stripfabricationmulti-partdeformabletangible Input
相關次數:
  • 被引用被引用:0
  • 點閱點閱:68
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們提出FlexiBend,一個用於偵測可變形物體的條狀形變感測器。
隨著3D製作技術的的進步,創客(Maker)開始注意到如何讓製作出的物體具有互動性。
在過去研究中的解決方案,常會遇上必須要加裝多個感測器的方式,但這樣對使用者來說非常的麻煩。
過去提出使用單一感測器的方式,又很難支援高自由度的偵測。
FlexiBend利用多個呈線型排列組成的應變規作為感測裝置,因此可以做到不需要外界感測器輔助的一體化設計。
由於這樣的設計,FlexiBend可以輕易的塞入可撓曲物件中作為感測物體變形的依據。
也可以進一步透過輸入元件的設計,使得多物件的可變形物體可以藉由安裝的FlexiBend感測到使用者在這些元件上的輸入。
此外,我們也在這篇論文中討論,賦予FlexiBend可定型、顯示或是動作感測的能力後,作為有形的輸入裝置的可能性。

我們在這篇論文中,詳述FlexiBend的硬體製作過程,以及如何藉著應變規的感測資料重建形變後的形狀。
而重建精確度的測試結果也證明FlexiBend的確能夠感測複雜的變形。
我們也描述如何利用FlexiBend來感測可撓曲的物件,以及在配合元件的設計下,感測元件的輸入變形。
更進一步,我們探討將FlexiBend作為有形的輸入裝置的可能應用

We present FlexiBend, a shape-aware strip for sensing deformables, which is made by a dense linear array of strain gauges for shape sensing.
With its self-sensing nature, FlexiBend can be easily installed into deformables.
After installation, FlexiBend can simultaneously sense user inputs on different parts of a fabrication, or even capture the geometry of a deformable fabrication.
Furthermore, by enabling advanced features, such as shape-retaining property, display capability, and motion sensing on FlexiBend, user can also use FlexiBend as a tangible input device.

In this thesis, we describe the hardware setup of this shape-aware strip sensor and the deformation reconstruction algorithm for shape sensing.
An evaluation shows our prototype is capable of reconstructing complex deformations accurately.
We also detail using FlexiBend to detect deformation for flexible models and, with the widget design, for multi-part deformables.
We further discuss the potential use for FlexiBend serving as a tangible input device.

[1] Marynel Vazquez, Eric Brockmeyer, Ruta Desai, Chris Harrison, and Scott E. Hud- son. 3d printing pneumatic device controls with variable activation force capabilities. In Proc. ACM CHI ’15, pages 1295–1304, 2015.

[2] Yuta Sugiura, Gota Kakehi, Anusha Withana, Calista Lee, Daisuke Sakamoto, Maki Sugimoto, Masahiko Inami, and Takeo Igarashi. Detecting shape deformation of soft objects using directional photoreflectivity measurement. In Proc. ACM UIST ’11, pages 509–516, 2011.

[3] Karl Willis, Eric Brockmeyer, Scott Hudson, and Ivan Poupyrev. Printed optics: 3d printing of embedded optical elements for interactive devices. In Proc. ACM UIST ’12, UIST ’12, pages 589–598, 2012.

[4] Ronit Slyper, Ivan Poupyrev, and Jessica Hodgins. Sensing through structure: De- signing soft silicone sensors. In Proc. ACM TEI ’11, pages 213–220, 2011.

[5]Karen Vanderloock, Vero Vanden Abeele, Johan A.K. Suykens, and LucGeurts. The skweezee system: Enabling the design and the programming of squeeze interactions. In Proc. ACM UIST ’13, pages 521–530, 2013.

[6] Valkyrie Savage, Andrew Head, Bjorn Hartmann, Dan B. Goldman, Gautham Mysore, and Wilmot Li. Lamello: Passive acoustic sensing for tangible input com- ponents. In Proc. ACM CHI ’15, pages 1277–1280, 2015.

[7] Gierad Laput, Eric Brockmeyer, Scott E. Hudson, and Chris Harrison. Acoustru- ments: Passive, acoustically-driven, interactive controls for handheld devices. In Proc. ACM CHI ’15, pages 2161–2170, 2015.

[8] Munehiko Sato, Ivan Poupyrev, and Chris Harrison. Touche: Enhancing touch in- teraction on humans, screens, liquids, and everyday objects. In Proc. ACM CHI ’12, pages 483–492, 2012.

[9] Makoto Ono, Buntarou Shizuki, and Jiro Tanaka. Touch & activate: Adding inter- activity to existing objects using active acoustic sensing. In Proc. ACM UIST ’13, pages 31–40, 2013.

[10] Valkyrie Savage, Ryan Schmidt, Tovi Grossman, George Fitzmaurice, and Bjorn Hartmann. A series of tubes: Adding interactivity to 3d prints using internal pipes. In Proc. ACM UIST ’14, pages 3–12, 2014.

[11] Valkyrie Savage, Colin Chang, and Bjorn Hartmann. Sauron: Embedded single- camera sensing of printed physical user interfaces. In Proc. ACM UIST ’13, pages 447–456, 2013.

[12]Tovi Grossman, Ravin Balakrishnan, and Karan Singh. An interface for creating and manipulating curves using a high degree-of-freedom curve input device. In Proc. ACM CHI ’03, pages 185–192, 2003.

[13]Ravin Balakrishnan, George Fitzmaurice, Gordon Kurtenbach, and Karan Singh. Exploring interactive curve and surface manipulation using a bend and twist sensitive input strip. In Proc. ACM I3D ’99, pages 111–118, 1999.

[14] Majken K. Rasmussen, Esben W. Pedersen, Marianne G. Petersen, and Kasper Hornbak. Shape-changing interfaces: A review of the design space and open re- search questions. In Proc. ACM CHI ’12, pages 735–744, 2012.

[15] Christian Rendl, David Kim, Sean Fanello, Patrick Parzer, Christoph Rhemann, Jonathan Taylor, Martin Zirkl, Gregor Scheipl, Thomas Rothlander, Michael Haller,and Shahram Izadi. Flexsense: A transparent self-sensing deformable surface. In Proc. ACM UIST ’14, pages 129–138, 2014.

[16] Jurgen Steimle, Andreas Jordt, and Pattie Maes. Flexpad: Highly flexible bending interactions for projected handheld displays. In Proc. ACM CHI ’13, pages 237–246, 2013.

[17] Sean Follmer, Daniel Leithinger, Alex Olwal, Nadia Cheng, and Hiroshi Ishii. Jam- ming user interfaces: Programmable particle stiffness and sensing for malleable and shape-changing devices. In Proc. ACM UIST ’12, pages 519–528, 2012.

[18] Sean Follmer, Micah Johnson, Edward Adelson, and Hiroshi Ishii. deform: An interactive malleable surface for capturing 2.5d arbitrary objects, tools and touch. In Proc. ACM UIST ’11, pages 527–536, 2011.

[19] Carsten Schwesig, Ivan Poupyrev, and Eijiro Mori. Gummi: A bendable computer. In Proc. ACM CHI ’04, pages 263–270, 2004.

[20] Byron Lahey, Audrey Girouard, Winslow Burleson, and Roel Vertegaal. Paper- phone: Understanding the use of bend gestures in mobile devices with flexible elec- tronic paper displays. In Proc. ACM CHI ’11, pages 1303–1312, 2011.

[21] Vinh P. Nguyen, Sang Ho Yoon, Ansh Verma, and Karthik Ramani. Bendid: Flexible interface for localized deformation recognition. In Proc. ACM UbiComp ’14, pages 553–557, 2014.

[22] Frederik Rudeck and Patrick Baudisch. Rock-paper-fibers: Bringing physical affor- dance to mobile touch devices. In Proc. ACM CHI ’12, pages 1929–1932, 2012.

[23] Numerical analysis of the reinforcement effect of a strain gage applied to a soft ma- terial. International Journal of Engineering Science, 17(7):907 – 915, 1979.

[24] Nobuyuki Matsushita and Jun Rekimoto. Holowall: Designing a finger, hand, body, and object sensitive wall. In Proc. ACM UIST ’97, pages 209–210, 1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文