跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 17:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡昀哲
研究生(外文):Yun-Che Tsai
論文名稱:基於人臉辨識實現辦公室入口管制
論文名稱(外文):Office Entrance Control with Face Recognition
指導教授:傅楸善傅楸善引用關係
指導教授(外文):Chiou-Shann Fuh
口試委員:鄭文欽李昌鴻
口試委員(外文):Wen-Chin ChengChang-Hung Li
口試日期:2015-06-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:68
中文關鍵詞:臉部辨識眼鏡偵測自適應增強均勻的局部二值模式
外文關鍵詞:face recognitioneyeglass detectionAdaboostuniform local binary pattern
相關次數:
  • 被引用被引用:1
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個人臉辨識的方法以及門禁系統的設置。就人臉辨識而言,我們結合Uniform Local Binary Pattern以及Adaboost達到可接受的辨識率以及執行時間。我們使用幾項簡單的硬體完成門禁系統的設置,此裝置目前正在我們實驗室運作。最後藉由使用水平Sobel算子,我們提出一個簡單的眼睛偵測的方法,來判讀被測試人員是否戴著眼鏡,此方法可以應用在其他方面。

A method of face recognition and a door access control system is proposed in this thesis. We combine uniform local binary pattern and Adaboost for face recognition. We achieve acceptable recognition rate and computation time for door access control system. A door control system uses several pieces of simple hardware so that everyone can build the system easily. By using horizontal Sobel operator, a simple eyeglasses detection method is also proposed to judge if tested person wears eyeglass or not. It may apply to other applications.

誌謝 i
口試委員會審定書 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
Chapter 2 Related Works 4
2.1 Local Binary Pattern 4
2.2 Local Ternary Patterns 7
2.3 Support Vector Machine 10
2.4 Adaptive Boosting (Adaboost) 13
2.5 Histogram Comparison 15
2.6 Eyeglasses Detection 17
Chapter 3 Methodology 19
3.1 Crop Face from Image 22
3.2 Illumination Normalization 26
3.3 Uniform Local Binary Pattern and Histogram 28
3.4 Classification 29
Chapter 4 System Setup 31
Chapter 5 Experimental Results 39
5.1 Face Databases 39
5.2 Evaluation about Histogram Comparison Methods 40
5.3 Retaining Eyebrows or Not 41
5.4 Performance on Eyeglasses Detection 41
5.5 Comparison with Luxand 43
Chapter 6 Conclusion and Future Works 60
REFERENCES 62


[1]T. Ahonen, A. Hadid, and M. Pietikäinen, “Face Recognition with Local Binary Patterns,” Lecture Notes in Computer Science, Vol. 3021, pp. 469-481, 2004.
[2]O. Barkan, J. Weill, L. Wolf, and H. Aronowitz, “Fast High Dimensional Vector Multiplication Face Recognition,” Proceedings of International Conference on Computer Vision, Sydney, NSW, pp. 1960-1967, 2013.
[3]D. Cai, X. F. He, J. W. Han, and H. J. Zhang, “Orthogonal Laplacianfaces for Face Recognition,” IEEE Transactions on Image Processing, Vol. 15, No. 11, pp. 3608-3614, 2006.
[4]Q. Cao, Y. M. Ying, and P. Li, “Similarity Metric Learning for Face Recognition,” Proceedings of IEEE International Conference on Computer Vision, Sydney, NSW, pp. 2408-2415, 2013.
[5]C. F. Chen, C. P. Wei, and Y. C. F. Wang, “Low-Rank Matrix Recovery with Structural Incoherence for Robust Face Recognition,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, pp. 2618-2625, 2012.
[6]T. Chen, W. T. Yin, X. S. Zhou, D. Comaniciu, and T. S. Huang, “Total Variation Models for Variable Lighting Face Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, No. 9, pp. 1519-1524, 2006.
[7]Z. Cui, W. Li, D. Xu, S. G. Shan, and X. L. Chen, “Fusing Robust Face Region Descriptors via Multiple Metric Learning for Face Recognition in the Wild,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, Oregon, pp. 3554-3561, 2013.
[8]C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine Learning, Vol. 20, No. 3, pp. 273-297, 1995.
[9]Y. Freund and R. E. Schapire, “A Desicion-Theoretic Generalization of On-Line Learning and an Application to Boosting,” Proceedings of European Conference on Computational Learning Theory, Barcelona, Spain, pp. 23-37, 1995.
[10]D. Gabor, “Theory of communication,” Transactions on Institution of Electrical Engineers, Vol 93, No 26, pp. 429-441, 1946.
[11]A. S. Georghiades, P. N. Belhumeur, and D. Kriegman, “From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose, ” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 6, pp. 643-660, 2001.
[12]G. D. Guo, S. Z. Li, and K. L. Chan. “Face Recognition by Support Vector Machines,” Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France, pp. 196-201, 2000.
[13]Z. W. Huang, X. W. Zhao, S. G. Shan, R. P. Wang, and X. L. Chen, “Coupling Alignments with Recognition for Still-to-Video Face Recognition,” Proceedings of IEEE International Conference on Computer Vision, Sydney, NSW, pp. 3296-3303, 2013.
[14]O. Jesorsky, K. Kirchberg, and R. Frischolz, “Robust Face Detection Using the Hausdorff Distance,” In J. Bigun and F. Smeraldi, editors, Audio andVideo Based Person Authentication, pp. 90–95, Springer, 2001.
[15]M. N. Kan, S. G. Shan, H. Chang, and X. L. Chen, “Stacked Progressive Auto-Encoders (SPAE) for Face Recognition across Poses,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, pp. 4321-4328, 2014.
[16]A. Kasiński and A. Florek, A, “The Put Face Database,” Schmidt Image Processing & Communications, Vol. 13, No. 3-4, pp. 59-64, 2008.
[17]Z. Lei, D. Yi, and S. Z. Li, “Discriminant Image Filter Learning for Face Recognition with Local Binary Pattern Like Representation,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, pp. 1063-6919, 2012.
[18]S. Z. Li, R. F. Chu, M. Ao, L. Zhang, and R. He, “Highly Accurate and Fast Face Recognition Using Near Infrared Images,” Advances in Biometrics. Springer, Berlin, pp. 151-158, 2005.
[19]S. Z. Li, R. F. Chu, S. G. Liao, and L. Zhang, “Illumination Invariant Face Recognition Using Near-Infrared Images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, No. 4, pp. 627-639, 2007.
[20]S. G. Liao, X. X. Zhu, Z. Lei, L. Zhang, and S. Z. Li, “Learning Multi-Scale Block Local Binary Patterns for Face Recognition,” Advances in Biometrics, Springer, Berlin, pp. 828-837, 2007.
[21]C. J. Liu, “Capitalize on Dimensionality Increasing Techniques for Improving Face Recognition Grand Challenge Performance,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, No. 5, pp. 725-737, 2006.
[22]C. C. Lu, D. L. Zhao, and X. O. Tang, “Face Recognition Using Face Patch Networks,” Proceedings of IEEE International Conference on Computer Vision, Sydney, NSW, pp. 3288-3295, 2013.
[23]P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews, “The Extended Cohn-Kanade Dataset (CK+): A Complete Dataset for Action Unit and Emotion-Specified Expression,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, San Francisco, CA, pp. 94-101, 2010.
[24]Luxand, “About Luxand,” https://www.luxand.com/, 2015.
[25]M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding Facial Expressions with Gabor Wavelets,” Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan, pp. 200-205, 1998.
[26]A. M. Martinez and R. Benavente, “The AR Face Database,” CVC Tech. Report #24, 1998.
[27]D. Masip, À. Lapedriza, and J. Vitrià, “Boosted Online Learning for Face Recognition,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 39, No. 2, pp. 530-538, 2009.
[28]E. Murphy-Chutorian and M. M. Trivedi, “Head Pose Estimation in Computer Vision: A Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 31, No. 4, pp. 607-626, 2009.
[29]I. Naseem, R. Togneri, and M. Bennamoun, “Linear Regression for Face Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 11, pp. 2106-2112, 2010.
[30]T. Ojala, M. Pietikäinen, and D. Harwood, “Performance Evaluation of Texture Measures with Classification Based on Kullback Discrimination of Distributions,” Proceedings of IAPR International Conference on Pattern Recognition, Stockholm, Sweden, Vol. 1, pp. 582 – 585, 1994.
[31]E. G. Ortiz, A. Wright, and M. Shah, “Face Recognition in Movie Trailers via Mean Sequence Sparse Representation-Based Classification,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, Oregon, pp. 3531-3538, 2013.
[32]G. Shakhnarovich, P. A. Viola, and B. Moghaddam, “A Unified Learning Framework for Real Time Face Detection and Classification,” Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, Washington, DC, pp. 14-22, 2002.
[33]P. Sinha, B. Balas, Y. Ostrovsky, and R. Russell, “Face Recognition by Humans: Nineteen Results All Computer Vision Researchers Should Know about,” Proceedings of the IEEE, Vol. 94, No. 11, pp. 1948-1962, 2006.
[34]X. Y. Tan and B. Triggs, “Enhanced Local Texture Feature Sets for Face Recognition under Difficult Lighting Conditions,” IEEE Transactions on Image Processing, Vol. 19, No. 6, pp. 1635-1650, 2010.
[35]A. Wagner, J. Wright, A. Ganesh, Z. H. Zhou, H. Mobahi, and Y. Ma, “Toward a Practical Face Recognition System: Robust Alignment and Illumination by Sparse Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 34, No. 2, pp. 372-386, 2012.
[36]R. L. Weng, J. W. Lu, J. L. Hu, G. Yang, and Y. P. Tan, “Robust Feature Set Matching for Partial Face Recognition,” Proceedings of International Conference on Computer Vision, Sydney, NSW, pp. 601-608, 2013.
[37]Wikipedia, “Curse of Dimensonality,” http://en.wikipedia.org/wiki/Curse_of_dimensionality, 2015.
[38]L. Wolf and N. Levy, “The SVM-Minus Similarity Score for Video Face Recognition,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, Oregon, pp. 3523-3530, 2013.
[39]J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust Face Recognition via Sparse Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 31, No. 2, pp. 210-227, 2009.
[40]X. Xiong and F. De la Torre, “Supervised Descent Method and Its Application to Face Alignment,” Proceedings of IEEE International Conference on Computer Vision, Sydney, NSW, pp. 532 – 539, 2013.
[41]Y. J. Xiong, W. Liu, D. L. Zhao, and X. O. Tang, “Face Recognition via Archetype Hull Ranking,” Proceedings of IEEE International Conference on Computer Vision, Sydney, NSW, pp. 585-592, 2013.
[42]J. Yang, D. Zhang, A. F. Frangi, and J. Y. Yang, “Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, No. 1, pp. 131-137, 2004.
[43]D. Yi, Z. Lei, and S. Z. Li, “Towards Pose Robust Face Recognition,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, pp. 3539-3545, 2013.
[44]G. C. Zhang, X, S. Huang, S. Z. Li, Y. S. Wang, and X. H. Wu, “Boosting Local Binary Pattern (LBP)-Based Face Recognition,” Advances in Biometric Person Authentication, Springer, Berlin, pp. 179-186, 2005.
[45]D. Zhang, M. Yang, and X. G. Feng, “Sparse Representation or Collaborative Representation: Which Helps Face Recognition?,” Proceedings of International Conference on Computer Vision, Barcelona, Spain, pp. 471-479, 2011.
[46]B. C. Zhang, S. G. Shan, X. L. Chen, and W. G, “Histogram of Gabor Phase Patterns (HGPP): A Novel Object Representation Approach for Face Recognition,” IEEE Transactions on Image Processing, Vol. 16, No. 1, pp. 57-68, 2007.
[47]H. G. Zhang, W. Gao, X. L. Chen, and D. B. Zhao, “Learning Informative Features for Spatial Histogram-Based Object Detection,” Proceedings of IEEE International Joint Conference on Neural Networks, Montreal, Quebec, Canada, Vol. 3, pp. 1806-1811, 2005.
[48]Q. Zhang and B. X. Li, “Discriminative K-SVD for Dictionary Learning in Face Recognition,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, pp. 2691-2698, 2010.
[49]J. Zou, Q. Ji, and G. Nagy, “A Comparative Study of Local Matching Approach for Face Recognition,” IEEE Transactions on Image Processing, Vol. 16, No. 10, pp. 2617-2628, 2007.
[50]L. Zhuang, A. Y. Yang, Z. H. Zhou, S. S. Sastry, and Y. Ma, “Single-Sample Face Recognition with Image Corruption and Misalignment via Sparse Illumination Transfer,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, Oregon, pp. 3546-3553, 2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top