跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 11:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳宗鴻
研究生(外文):Tsung-Hung Wu
論文名稱:基於龍圖兒之快速大型原型生成
論文名稱(外文):Large-Scale Rapid-Prototyping with Zometool
指導教授:陳炳宇陳炳宇引用關係
指導教授(外文):Bing-Yu Chen
口試委員:林文杰王昱舜朱宏國
口試委員(外文):Wen-Chieh LinYu-Shuen WangHung-Kuo Chu
口試日期:2015-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:52
中文關鍵詞:龍圖兒結構非流形結構大型原型生成模型處理
外文關鍵詞:Zometool structureNon-manifold structureLarge-scalePrototypingModeling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
最近因為三維印表機的取得容易許多,使得個人化製造的相
關領域受到較多關注,但是一般市面上的三維印表機存在兩個大
問題: 需要較長的列印時間以及輸出受限於印表機大小,這些問
題使得市售的3D 印表機無法做到快速大型原型生成,在此研究
中,我們提出一個有效率的方法來使用龍圖兒(Zometool) 做出一
個近似原三維模型的結果。
為了要使組裝更容易以及使用更少材料,方法中使用了大區
塊的形狀抽象化,輸入的三維模型先以分區法分為許多類似圓柱
形的區塊,接著將各區塊的邊界轉為環形的龍圖兒結構,之後再
以搜尋最短路徑的方法找尋環形之間的連接結構,最後再順著各
分區的軸產生一些中間的環來逼近原三維模型,此論文並附上一
些實際拼出的結果圖與分析圖表來展示本研究方法的實用性。
本研究提供一個系統來實現所有論文中提到的演算法,並且
加入良好的圖形化使用者介面使的結果有更好的呈現,同時以此
介面加速使用者組合實際龍圖兒原型的過程,在最後將會附上系
統圖呈現。

In recent years, personalized fabrication has attracted much attention due
to the greatly improved accessibility of consumer-level 3D printers. However,
consumer 3D printers still suffers from the relatively long production time
and limited output size, which are undesirable factors to large-scale rapidprototyping.
In this paper, we present an efficient method to approximate a
given 3D shape with Zometool.
To achieve ease of assembly and economic usage of building units, the
proposed method generates the Zometool structures through a higher level of
shape abstraction. The input model is first partitioned into a collection of generalized
cylinders by mesh segmentation. The boundaries of mesh segments
are converted into ring-like structures and inter-linked by finding the shortest
path between them. Additional ring structures are then added along the
representative axis of each segment to better approximate the underlying 3D
shape. We demonstrate the effectiveness of the proposed method by a variety
of 3D models along with examples of the physically fabricated objects.

口試委員會鑑定書 i
致謝ii
中文摘要iv
Abstract v
Contents vi
List of Figures viii
List of Tables xiii
1 Motivation 1
2 Introduction 2
3 Related Work 5
3.1 Mesh Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Computational Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Zometool Design and Modeling . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Overview 13
5 Zometool Construction 16
5.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.1 Ring Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.2 Axis Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Zometool Path Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.1 Quick approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.2 Optimized approach . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Structure Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.1 Path Connection . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.2 Slicing Ring Generation . . . . . . . . . . . . . . . . . . . . . . 24
5.3.3 Support Addition . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.1 Outward Features . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.2 Multi-Branch Segments . . . . . . . . . . . . . . . . . . . . . . 26
5.5 Gravity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5.1 Method Implement . . . . . . . . . . . . . . . . . . . . . . . . . 27
6 Results and Discussion 29
6.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Limitation and future work . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7 Implementation of System 40
7.1 System environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2 GUI design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8 Experiment 43
9 Conclusion 48
Bibliography 49

[1] H. Zimmer and L. Kobbelt. Zometool rationalization of freeform surfaces. IEEE
Trans. Vis. Comput. Graph., 20(10):1461–1473, 2014.
[2] Henrik Zimmer, Florent Lafarge, Pierre Alliez, and Leif Kobbelt. Zometool shape
approximation. Graph. Models, 76(5):390–401, 2014.
[3] Shymon Shlafman, Ayellet Tal, and Sagi Katz. Metamorphosis of polyhedral surfaces
using decomposition. Comput. Graph. Forum, 21(3):219–228, 2002.
[4] Aleksey Golovinskiy and Thomas Funkhouser. Randomized cuts for 3D mesh analysis.
ACM Trans. Graph., 27(5):145:1–145:12, 2008.
[5] Sagi Katz and Ayellet Tal. Hierarchical mesh decomposition using fuzzy clustering
and cuts. ACM Trans. Graph., 22(3):954–961, 2003.
[6] Marco Attene, Bianca Falcidieno, and Michela Spagnuolo. Hierarchical mesh segmentation
based on fitting primitives. Vis. Comput., 22(3):181–193, 2006.
[7] Yu-Kun Lai, Shi-Min Hu, Ralph R. Martin, and Paul L. Rosin. Fast mesh segmentation
using random walks. In Proc. SPM ’08, pages 183–191, 2008.
[8] Sagi Katz, George Leifman, and Ayellet Tal. Mesh segmentation using feature point
and core extraction. Vis. Comput., 21(8-10):649–658, 2005.
[9] Rong Liu and Hao Zhang. Segmentation of 3D meshes through spectral clustering.
In Proc. PG ’04, pages 298–305, 2004.
[10] Hsueh-Yi Lin, H. Y. M. Liao, and Ja-Chen. Lin. Visual salience-guided mesh decomposition.
IEEE Trans. Multi., 9(1):46–57, 2007.
[11] Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. Consistent mesh partitioning and
skeletonisation using the shape diameter function. Vis. Comput., 24(4):249–259,
2008.
[12] Stefanie Mueller, Tobias Mohr, Kerstin Guenther, Johannes Frohnhofen, and Patrick
Baudisch. fabrickation: Fast 3D printing of functional objects by integrating construction
kit building blocks. In Proc. ACM CHI ’14, pages 3827–3834, 2014.
[13] Valkyrie Savage, Colin Chang, and Bjorn Hartmann. Sauron: Embedded singlecamera
sensing of printed physical user interfaces. In Proc. ACM UIST ’13, pages
447–456, 2013.
[14] Stefanie Mueller, Pedro Lopes, and Patrick Baudisch. Interactive construction: Interactive
fabrication of functional mechanical devices. In Proc. ACM UIST ’12, pages
599–606, 2012.
[15] Stefanie Mueller, Sangha Im, Serafima Gurevich, Alexander Teibrich, Lisa Pfisterer,
Francois Guimbretiere, and Patrick Baudisch. Wireprint: 3D printed previews for
fast prototyping. In Proc. ACM UIST ’14, pages 273–280, 2014.
[16] Weiming Wang, Tuanfeng Y. Wang, Zhouwang Yang, Ligang Liu, Xin Tong, Weihua
Tong, Jiansong Deng, Falai Chen, and Xiuping Liu. Cost-effective printing of 3D
objects with skin-frame structures. ACM Trans. Graph., 32(6):177:1–177:10, 2013.
[17] Paolo Cignoni, Nico Pietroni, Luigi Malomo, and Roberto Scopigno. Field-aligned
mesh joinery. ACM Trans. Graph., 33(1):11:1–11:12, 2014.
[18] Akash Garg, Andrew O. Sageman-Furnas, Bailin Deng, Yonghao Yue, Eitan Grinspun,
Mark Pauly, and Max Wardetzky. Wire mesh design. ACM Trans. Graph.,
33(4):66:1–66:12, 2014.
[19] Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. Chopper:
partitioning models into 3d-printable parts. ACM Trans. Graph., 31(6):129, 2012.
[20] Ruizhen Hu, Honghua Li, Hao Zhang, and Daniel Cohen-Or. Approximate pyramidal
shape decomposition. ACM Transactions on Graphics (TOG), 33(6):213, 2014.
[21] Jun Mitani and Hiromasa Suzuki. Making papercraft toys from meshes using stripbased
approximate unfolding. ACM Trans. Graph., 23(3):259–263, August 2004.
[22] Kristian Hildebrand, Bernd Bickel, and Marc Alexa. crdbrd: Shape fabrication by
sliding planar slices. Computer Graphics Forum, 31(2pt3):583–592, 2012.
[23] Peng Song, Chi-Wing Fu, and Daniel Cohen-Or. Recursive interlocking puzzles.
ACM Trans. Graph., 31(6):128:1–128:10, November 2012.
[24] S. Vorthmann. vZome [online].
[25] E. Schlapp. ZomeCAD. [online].
[26] David Baraff. Fast contact force computation for nonpenetrating rigid bodies. In
Proceedings of the 21st Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’94, pages 23–34, New York, NY, USA, 1994. ACM.
[27] Danny M. Kaufman, Timothy Edmunds, and Dinesh K. Pai. Fast frictional dynamics
for rigid bodies. ACM Trans. Graph., 24(3):946–956, July 2005.
[28] D. E. STEWART and J. C. TRINKLE. An implicit time-stepping scheme for rigid
body dynamics with inelastic collisions and coulomb friction. International Journal
for Numerical Methods in Engineering, 39(15):2673–2691, 1996.
[29] Jong-Shi Pang and David E. Stewart. A unified approach to discrete frictional contact
problems. International Journal of Engineering Science, 37(13):1747 – 1768, 1999.
[30] M. Raous, L. Cangemi, and M. Cocu. A consistent model coupling adhesion, friction,
and unilateral contact. Computer Methods in Applied Mechanics and Engineering,
177(3–4):383 – 399, 1999.
[31] Eran Guendelman, Robert Bridson, and Ronald Fedkiw. Nonconvex rigid bodies
with stacking. ACM Trans. Graph., 22(3):871–878, July 2003.
[32] Kenny Erleben. Velocity-based shock propagation for multibody dynamics animation.
ACM Trans. Graph., 26(2), June 2007.
[33] Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai. Staggered
projections for frictional contact in multibody systems. ACM Trans. Graph., 27(5):
164:1–164:11, December 2008.
[34] Jorge Gascon, Javier S. Zurdo, and Miguel A. Otaduy. Constraint-based simulation
of adhesive contact. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’10, pages 39–44, Aire-la-Ville, Switzerland,
Switzerland, 2010. Eurographics Association.
[35] Nobuyuki Umetani, Takeo Igarashi, and Niloy J Mitra. Guided exploration of physically
valid shapes for furniture design. ACM Trans. Graph., 31(4):86, 2012.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top