跳到主要內容

臺灣博碩士論文加值系統

(34.236.36.94) 您好!臺灣時間:2021/07/24 23:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李泉龍
研究生(外文):Chuan-Lung Lee
論文名稱:考量水平與垂直適搭度的自動音樂混搭製作系統
論文名稱(外文):Automatic Mashup Creation by Considering Both Vertical and Horizontal Mashabilities
指導教授:吳家麟
口試委員:林育慈陳文進鄭文皇
口試日期:2015-06-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:28
中文關鍵詞:音樂混搭音樂串燒適搭度垂直適搭度水平適搭度結構平衡音量權重創作性音樂資訊檢索
外文關鍵詞:music mashupmashabilityvertical mashabilityhorizontal mashabilitytexture balancevolume weightcreative MIR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文當中,我們提供了一個有效創作音樂混搭 (或稱之為音樂串燒) 的系統。音樂混搭是一種將複數曲子藉由重疊或銜接等技巧而創造出的重製音樂。鑑於前人的研究只有考慮將不同的曲子以重疊的方式疊入單一一首基底伴奏,我們提供的系統可以製作多個不同基底伴奏以及多個不同主弦律的音樂混搭成品。為此,當我們在搜尋適當的曲子來完成音樂混搭成品時,我們除了要衡量兩首歌一上一下重疊在一起 (垂直方向) 是否和諧外,還要衡量兩首歌一前一後銜接在一起(水平方向) 是否順暢。如此一來,我們的系統在結構上較前人的系統具有更高的彈性。在垂直方向上,我們提出了兩個新的衡量因子:“結構平衡” 與 “音量權重”,即為 “垂直適搭度”。而在水平方向上,我們引入了前人用來尋找適當銜接不同曲子的技術,即為 “水平適搭度”。將上述兩個方向的適搭度結合,我們定義了可能會遭遇的四種情境,以及針對這四種情境各自的處理方式。主觀實驗結果顯示,我們新提出的垂直適搭度相較於前人的研究,對使用者滿意度有統計上顯著的改善。此外,實驗結果也證明,我們所提出的四種情境也確實會影響使用者滿意的程度。

In this paper, we proposed a system to effectively create music mashups – a kind of re-created music that is made by mixing parts of multiple existing music pieces. Unlike previous studies which merely generate mashups by overlaying music segments on one single base track, the proposed system creates mashups with multiple background (e.g. instrumental) and lead (e.g. vocal) track segments. So, besides the suitability between the vertically overlaid tracks (i.e. vertical mashability) used in previous studies, we proposed to further consider the suitability between the horizontally connected consecutive music segments (i.e. horizontal mashability) when searching for proper music segments to be combined. On the vertical side, two new factors:“texture balance” and “volume weight” have been considered. On the horizontal side, the methods used to find proper segments for concatenation in the studies of medley creation are incorporated. Combining vertical and horizontal mashabilities together, we defined four levelsof mashability that may be encountered and found the proper solution to each one of them. Subjective evaluations showed that the proposed four levels of mashability can appropriately reflect the degrees of listening enjoyment. Besides, by taking the newly proposed vertical mashability measurement into account, the improvement in user satisfaction is statistically significant.


口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Contents v
List of Figures vii
List of Tables ix
1 Introduction 1
2 Related Work 4
3 Proposed framework 6
4 Schemes 8
4.1 Preprocessing . . . . 8
4.2 Mashup Composition . . . 8
4.2.1 Vertical Stage . . . .9
4.2.2 Horizontal Stage . . . 12
4.3 Mashup Generation . . . 16
5 Experiment 17
5.1 Dataset . . . . . . 17
5.2 Parameter Settings . . . .17
5.3 Subjective Evaluations on Horizontal Mashability 20
5.4 Subjective Evaluations on Vertical Mashability 22
6 Conclusion 24
7 Future Work 25
Bibliography 26

[1] S. Siegel and N.J. Castellan. Nonparametric statistics for the behavioral sciences.
McGraw-Hill, Inc., 1956.
[2] Melissa Hok Cee Wong. Mash-up. In Charles Hiroshi Garrett, editor, The Grove
Dictionary of American Music. 2 edition, 2013.
[3] Mixter.
[4] DJ Mix Generator.
[5] Matthew E P Davies, Philippe Hamel, Kazuyoshi Yoshii, and Masataka Goto. Au-
toMashUpper : An Automatic Multi-Song Mashup System. In Proc. ISMIR, Cu-
ritiba, PR, Brazil, 2013.
[6] Matthew E. P. Davies, Philippe Hamel, Kazuyoshi Yoshii, and Masataka Goto. Au-
toMashUpper: Automatic Creation of Multi-Song Music Mashups. IEEE Trans.
ASLP, 22(12):1726–1737, December 2014.
[7] Steven Hargreaves, Anssi Klapuri, and Mark Sandler. Structural segmentation of
multitrack audio. IEEE Transactions on Audio, Speech and Language Processing,
20(10):2637–2647, 2012.
[8] Garth Griffin, YE Kim, and Douglas Turnbull. Beat-Sync-Mash-Coder: a Web Ap-
plication for Real-Time Creation of Beat-Synchronous Music Mashups. In Proc.
ICASSP, pages 2–5, Dallas, Texas, USA, 2010.
[9] Mixed in Key. Mashup.
[10] Matthew Davies, Adam Stark, Fabien Gouyon, and Masataka Goto. Improvasher:
A Real-Time Mashup System for Live Musical Input. In Proc. NIME, pages 541–
544, 2014.
[11] Keita Tsuzuki, Tomoyasu Nakano, Masataka Goto, Takeshi Yamada, and Shoji
Makino. Unisoner : An Interactive Interface for Derivative Chorus Creation from
Various Singing Voices on the Web. In Proc. ICMC, number September, pages 790–
797, 2014.
[12] Tristan Jehan. Creating Music by Listening. Phd dissertation, Massachusetts Institute
of Technology, 2005.
[13] Hiromi Ishizaki, Keiichiro Hoashi, and Yasuhiro Takishima. Full-Automatic DJ
Mixing System with Optimal Tempo Adjustment based on Measurement Function
of User Discomfort. In Proc. of ISMIR, pages 135–140, Kobe, Japan, 2009.
[14] Heng-Yi Lin, Yin-Tzu Lin, Ming-Chun Tien, and Ja-Ling Wu. Music Paste: Con-
catenating Music Clips Based on Chroma and Rhythm Features. In Proc. ISMIR,
Kobe, 2009.
[15] Yin-Tzu Lin, I-Ting Liu, Jyh-Shing Roger Jang, and Ja-Ling Wu. Audio Musical
Dice Game: A User-preference-aware Medley Generating System. ACM TOMM.
[16] Simon Dixon. Evaluation of the Audio Beat Tracking System BeatRoot. J. New
Music Res., 36(1):39–50, 2007.
[17] Matthias Mauch and Simon Dixon. Approximate Note Transcription for the Im-
proved Identification of Difficult Chords. In Proc. ISMIR, number 1, pages 135–
140, 2010.
[18] Yizhao Ni, Matt McVicar, Paul Santos-Rodriguez, and Tijl De Bie. An End-to-End
Machine Learning System for Harmonic Analysis of Music. IEEE Trans. ASLP,
20(6):1771–1783, 2012.
[19] Steven B. Davis and Paul Mermelstein. Comparison of Parametric Representations
for Monosyllabic Word Recognition in Continuously Spoken Sentences. IEEE Trans.
ASLP, 28(4):357–366, 1980.
[20] D. Robinson. Perceptual Model for Assessment of Coded Audio. PhD thesis, Uni-
versity of Essex, 2002.
[21] Stephen Webber. DJ Skills: The Essential Guide to Mixing and Scratching. Focal
Press, 2007.
[22] Don Michael Randel. The Harvard Dictionary of Music. Belknap Press, 2003.
[23] Jyh-Shing Roger Jang. Speech and Audio Processing (SAP) Toolbox, 2015.
[24] C. Cannam. Rubber Band Audio Time Strecher Library, 2012.
[25] Mark Dolson. The Phase Vocoder: a Tutorial. Computer Music Journal, 10(4):14–
27, 1986.
[26] Rensis Likert. A Technique for the Measurement of Attitudes. Archives of Psychol-
ogy, 22(140):1–55, 1932.
[27] Ian Simon, Dan Morris, and Sumit Basu. MySong: automatic accompaniment gen-
eration for vocal melodies. In Proc. SIGCHI, pages 725–734, 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top