跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 08:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪上尚
研究生(外文):Shang- Shang Hong
論文名稱:植生分佈及密度對深水型人工溼地水力效率及水流型態影響之研究
論文名稱(外文):Hydraulic Efficiency Calculation and Related Flow Pattern Configuration of Vegetated Deep Constructed Wetlands
指導教授:許銘熙許銘熙引用關係
指導教授(外文):Ming-Hsi Hsu
口試委員:方偉達施上粟
口試委員(外文):Wei-Da FangShang-Su Shih
口試日期:2015-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:79
中文關鍵詞:人工溼地滯留時間分佈平均滯留時間水力效率追蹤劑試驗
外文關鍵詞:Constructed WetlandResidence Time DistributionHydraulic EfficiencyTracer Test
相關次數:
  • 被引用被引用:1
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,人工溼地常應用於汙水處理,而處理汙染物的效率與溼地內的流況以及停留時間有相當程度的關聯,因此本研究模擬現地製作模型,選用 Rhod-WT 作為追蹤劑進行模型追蹤劑試驗,獲得停留時間分佈,計算其水力效率,進而探討各種擺放物對於流況之影響,為了改善水力效率,比較挺水障礙物、沉水障礙物、高低密度仿挺水性植生+沉水障礙物,共設計了52 組追蹤劑試驗。

為有效提升深水型人工溼地之水力效率,本研究主要以改變障礙物的擺放方式、數量和長度,並分析挺水障礙物、沉水障礙物以及高低密度仿挺水性植生+沉水障礙物的改善效率差異。障礙物依照擺放方向不同、改變數量及長度設計12種擺放方式,首先,在相同水深和流量下,比較挺水障礙物和沉水障礙物之水力效率改善情形,研究結果發現,在未發生短路流狀況下,挺水障礙物之水力效率改善效果明顯優於沉水障礙物;為求提升沉水型障礙物之水力效率改善效果,在沉水障礙物上設置仿挺水性植物,依照植生密度分為低密度仿植生和高密度仿植生,研究結果顯示,高密度仿挺水性植生+沉水障礙物之水力效率改善效果皆優於低密度仿挺水性植生+沉水障礙物,而在某些情形下,仿挺水性植生+沉水障礙物之水力效率改善效果會優於挺水障礙物,本研究比較挺水障礙物、沉水障礙物、高低密度仿挺水性植生+沉水障礙物,找出各擺放方式的較佳改善方法。

Recently, the constructed wetland (CW) often used in sewage treatment. Artificailly constructed wetlands offer a low-cost treatment to remove some pollutants found in effluent water from industry, agriculture, and urban areas. The treatment efficiency strongly depends on flow pattern and residence times of the flow condition. This study thus presents a laboratory tracer experiment to estimate wetland residence time distributions and hydraulic efficiency, and use rhodamine-WT as the tracer. In order to improve hydraulic efficiency, 53 experiments are designed to test the improvement efficiency with different number, length and allocation of obstructions by laboratory model experiment.
To improve the hydraulic efficiency of deep water constructed wetland, this study changes the obstruction placed in the direction, the number and length, and analyze the improvement of hydraulic efficiency from emergent obstructions, submerged obstructions and different density emergent vegetation on submerged obstructions. In accordance with the obstruction placed in a different direction, number and length ,12 allocations are designed. First, at the same depth and flow, compare the improvement of hydraulic efficiency between emergent obstructions and submerged obstructions. The results show that, without short-circuit current situation, the emergent obstructions of improving hydraulic efficiency is better than submerged obstructions. To enhance the hydraulic efficiency improvement of submerged obstructions, set emergent vegetationnt on submerged obstructions. Results show that the hydraulic efficiency improvement effect of high-density emergent vegetation on submerged obstructions are superior to low-density emergent vegetation on submerged obstructions. In some cases, hydraulic efficiency improvement effect of high-density emergent vegetation on submerged obstructions will be better than emergent obstructions. This study compared the emergent obstacles, submerged obstructions, high and low density emergent vegetation on submerged obstructions, to find better ways to improve the hydraulic efficiency in different allocations.


摘要 I
Abstract II
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 研究緣起 1
1.2 研究動機與目的 1
1.3 研究架構 3
第二章 文獻回顧 5
2.1 人工溼地 5
2.2 追蹤劑試驗 6
2.2.1 追蹤劑種類 6
2.2.2追蹤劑試驗相關研究 7
2.3 水力效率與有效體積 7
2.3.1 死水區與混合區 8
2.4 水力效率相關研究 8
2.4.1 形狀 8
2.4.2水深差異 9
2.4.3 阻擋結構物 9
2.4.4 植生影響 10
第三章 研究方法 21
3.1 模擬現地背景 21
3.2模型試驗水槽 22
3.2.1 模型相似性 22
3.2.2 模型尺寸 22
3.3追蹤劑試驗 23
3.3.1 模型追蹤劑試驗進行方式 23
3.3.2 追蹤劑試驗數據分析方法 24
3.4 停留時間分佈(RESIDENCE TIME DISTRIBUTION, RTD) 25
3.4.1 汙水混合反應槽 26
3.5 水力效率評估 26
3.5.1 有效體積比(Effective Volume Ratio) 26
3.5.2 分散指標(N) 27
3.5.3 水力效率(Hydraulic Efficiency) 29
3.6 內部擺放 30
3.6.1 挺水(非浸沒)障礙物 31
3.6.2 沉水(浸沒)障礙物 31
3.6.3 仿挺水植生 31
第四章 結果與討論 41
4.1 空白試驗 42
4.2 障礙物擺放 43
4.2.1 挺水障礙物擺放 43
4.2.2 沉水障礙物擺放 44
4.2.3 挺水與沉水障礙物之綜合結果討論 45
4.3 仿挺水性植生設置 45
4.3.1 低密度仿挺水植生+沉水障礙物 46
4.3.2 高密度仿挺水植生+沉水障礙物 46
4.3.3 高低密度仿挺水植生設置之綜合結果討論 47
4.4 障礙物擺放與仿挺水植生設置之綜合結果討論 47
第五章 結論與建議 71
5.1 結論 71
5.2 建議 73
參考文獻 74




1.Bastviken, K.S., Weisner, S.E.B., Thiere, G., Svensson, J.M., Ehde, P.M., Tonderski, K.S., (2009). Effects of vegetation and hydraulic load on seasonal nitrate removal in treatment wetlands. Ecol. Eng. 35, 946-952.
2.Bodin, H. and Persson, J., (2012), Hydraulic performance of small free water surface constructed wetlands treating sugar factory effluent in western Kenya. Hydrology Research 43: 476-488.
3.Bodin, H., Persson, J., Englund, J.E. and Milberg, P., (2013), Influence of residence time analyses on estimates of wetland hydraulics and pollutant removal. Journal of Hydrology 501: 1-12.
4.Bodina,H., Miettob,A., Ehdec,P.M., Perssond, J. and Weisner, S.E.B., (2012), Tracer behaviour and analysis of hydraulics in experimental free water surface wetlands, ecologicl engineering, 49, 201-211.
5.Dierberg, F. E. and DeBusk, T. A. (2005). An evaluation of two tracers in surface-flow wetlands: Rhodamine-WT and lithium.Wetlands, 25(1), 8-25.
6.Dierberg, F.E., Juston, J.J., Debusk, T.A., Pietro, K. and Gu, B., (2005), Relationship between hydraulic efficiency and phosphorus removal in a submerged aquatic vegetation-dominated treatement wetland. Ecological Engineering 25: 9-23.
7.Farjood, A., Melville, B.W. and Shamseldin, A.Y., (2015), The effect of different baffles on hydraulic performance of a sediment retention pond, ecologicl engineering, 81, 228-232.
8.Fogler H.S., (2006), Elements of Chemical Reaction Engineering 4th edition. Upper Saddle River, NJ.
9.German J., K. Jansons, G. Svensson, D. Karlsson and L.G. Gustafsson, (2005), Modelling of different measures for improving removal in a stormwater pond. Water Science & Technology 52(5): 105-112.
10.Holland, J.F., Martin, J.F., Granata, T., Bouchard, V., Quigley, M. and Brown, L., (2004), Effects of Wetland Depth and Flow Rate on Residence Time Distribution Characteristics. Ecological Engineering 23: 189-203.
11.Jenkins, G. A. and Greenway, M. (2005). The hydraulic efficiency of fringing versus banded vegetation in constructed wetlands. Ecological Engineering,25(1), 61-72.
12.Kadlec, R. and Knight, R., (1996), Treatment wetlands, CRC Press, Lewis Publishers: 892.
13.Kadlec, R.H. and Wallace, S.D., (2009), Treatment wetlands. Second, CRC Press Inc., Boca Raton, Florida.
14.Kadlec, R.H., (1994), Detention and Mixing in Free Water Wetlands. Ecological Engineering 3: 345-380.
15.Keefe, S.H., Barber, L.B., Runkel, R.L., Ryan, J.N., McKnight, D.M. and Wass, R., (2004), Conservation and reactive solute transport in constructed wetlands. Water Resources Research 40: W012011-W012012.
16.Keefe, S.H., Daniels (Thullen), J.S., Runkel, R.L. and Wass, R.D., (2010). Influence of hummocks and emergent vegetation on hydraulic performance in a surface flow wastewater treatment wetland. Water Resources Research 46: 1-13.
17.Koshiaho, J., (2003), Flow velocity retardation and sediment retention in two constructed wetland-ponds. Ecological Engineering 19: 325-337.
18.Levenspiel, O., (1999), Chemical Reaction Enginnering, 3rd edition. John Wiley & Sons, USA.
19.Li, Y., Du, W. and Yu, Z., (2014). Impact of flexible emergent vegetation on the flow turbulence and kinetic energy characteristics in a flume experiment, Journal of Hydro-environment Research xx 1-14
20.Lightbody, A. F., Neof, H.M. and Bays, J.S., (2007), Mixing in deep zones within constructed treatment wetlands, ecologicl engineering, 29, 209-220.
21.Panigrahi, K. and Khatua, K.K., (2015). Prediction of velocity distribution in straight channel with rigid vegetation, Aquatic Procedia, 4, 819-825.
22.Persson, J., Somes N.L.G., and Wong, T.H.F., (1999), Hydraulics Efficiency of Constructed Wetlands and Ponds. Water Science and Technology 40(3): 291-300.
23.Schmid, B.H., Stephan,U. and Hengl, M.A., (2005), Sediment deposition in constructed wetland ponds with emergent vegetation: laboratory study and mathematical model, Water Science & Technology, 51(9), 307-314.
24.Serra, T., Fernando, H.J.S. and Rodriguez, R.V., (2004), Effects of emergent vegetation on lateral diffusion in wetlands, Water Research, 38, 139-147.
25.Shih, S.S., Kuo, P.H., Fang, W.T. and Ben A. LePage, (2013), A correction coefficient for pollutant removal in free water surfacewetlands using first-order modeling. Ecological Engineering 61: 200-206.
26.Stern, D. A., Khanbilvardi, R., Alair, J. C., & Richardson, W. (2001). Description of flow through a natural wetland using dye tracer tests. Ecological Engineering, 18(2), 173-184.
27.Su, T.M., Yang, S.C., Shih, S.S. and Lee, H.Y., (2009), Optimal design for hydraulic efficiency performance of free-water-surface constructed wetlands. Ecological Engineering 35: 1200-1207.
28.Sylvia, T., Richard S. P.,Logetestijn, V., Kampf, R., Schreijer, M. and Verhoeven, T.A., (2005), The Effect of Hydraulic Retention Time on the Removal of Pollutants From Sewage Treatment Plant Effluent on A Surface-flow Wetland System. Wetlands 25(2): 375-391.
29.Thackston, E.L., Shields, F.D. and Schroeder, P.R., (1987), Residence time distributions of shallow basins. Environment and Engineering 113: 1319-1332.
30.USEPA, (2000), Constructed Wetlands Treatment of Municipal Wastewaters, Manual.
31.Vesilind P.A. and Morgan, S.M., (2004), Introduction to Environmental Engineering, 2nd Edition. Thomson Brooks Cole, USA.
32.Wahl, M. D., Brown, L. C., Soboyejo, A. O., Martin, J. and Dong, B. (2010). Quantifying the hydraulic performance of treatment wetlands using the moment index. Ecological Engineering, 36(12), 1691-1699.
33.William J. Mitsch and James G. Gosselink, (1986), Wetlands.
34.Williams, C. F. and Nelson, S. D. (2011). Comparison of Rhodamine-WT and bromide as a tracer for elucidating internal wetland flow dynamics. Ecological Engineering, 37(10), 1492-1498.
35.Williams, M.D., Reimus, P.W., Vermeul, V.R., Rose, P.E., Dean, C.A., Waston, T.B., Newell, D.L., Leecaster, K.B. and Brauser, E.M., (2013), Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems. U.S. Department of Energy. Pacific Northwest National Laboratory.
36.Wilson Jr, J. F., Cobb, E. D. and Kilpatrick, F. A. (1986). Fluorometric procedures for dye tracing: US Geological Survey Techniques of Water-Resources 81 Investigations, book 3, chap. A12, 34.
37.Wu, F., (2008). Characteristics of flow resistance in open channels with non-submerged rigid vegetation, Journal of Hydrodynamics, 20(2), 239-245.
38.行政院農業委員會,2003,水土保持技術規範。
39.行政院環保署水質淨化現地處理站,2007,人工濕地規劃設計操作管理參考手冊。
40.李瑋婷,2014,深水型人工溼地水力效率改善之研析,國立臺灣大學生物環境系統工程所碩士論文。
41.張文賢、柯淳涵、張睿昇、林幸助,2005,建立人工濕地設置與操作作業程序及技術之研究,行政院公共工程委員會委託研究,愛魚生態工程有限公司。
42.張文亮,2006,水生植物在人工濕地水質淨化功效之評估及管理,河川水質自然淨化工法規劃設計與建造講習會手冊。
43.許秦蓁,1997,桃園陂塘:興盛與垂危,桃園縣立文化中心。
44.郭品含,2008,水質處理型滯洪溼地之最佳化設計研究,國立臺灣大學土木工程研究所碩士論文。
45.曾芸琦,2014,埤塘型濕地之追蹤劑試驗及水力效率改善研究,國立臺灣大學土木工程研究所碩士論文。
46.經濟部水利署水利規劃試驗所,2011,水工模型試驗參考手冊。
47.謝勝彥,2004,提升桃園水利會灌區埤塘供水潛能之探討,桃園大圳水資源暨營運管理學術研討會論文集。
48.蘇宗敏,2007,表面流人工溼地水力效率之研究,國立臺灣大學土木工程研究所碩士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top