跳到主要內容

臺灣博碩士論文加值系統

(18.207.132.116) 您好!臺灣時間:2021/07/29 21:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡豐合
研究生(外文):Fong-He Tsai
論文名稱:以自組特徵映射網路分析颱風路徑與推估全洪程歷線
論文名稱(外文):Investigate typhoon paths by self-organizing maps and predict long-term flow during typhoon periods
指導教授:張斐章張斐章引用關係
口試委員:張麗秋黃文政陳永祥曾鈞敏
口試日期:2015-06-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:97
中文關鍵詞:類神經網路自組特徵映射網路颱風路徑分類流量特徵曲線
外文關鍵詞:Artificial Neural Network (ANN)Self-Organizing Map Network (SOM)Typhoon path classificationFlow characteristic curve
相關次數:
  • 被引用被引用:1
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臺灣地處颱風路徑常經之地,每年夏秋兩季有遭受颱風侵襲與威脅之虞,不同颱風路徑造成各地災情況不同,如2004年艾利、2007柯羅莎、2009年莫拉克、2012蘇拉與2013蘇力颱風分別造成北、中、南不同地區之災情,所挾帶的豪大雨量及高降雨強度為水庫操作人員帶來極大的挑戰。以臺灣地區集水區小、坡陡流急之地文條件下,發展預測河川流量或水庫入流量模式多以數小時預報之短時距為主,可提供防災減洪參考之應變時間較短;若能在颱風來臨前,預測颱風全洪程流量歷線將有助於水庫在颱風來臨前之調節性放水策略與即時防洪操作之決策參考。
本研究以分析颱風路徑分類與水庫入流量型態之關係,提出預測颱風時期水庫全洪程入流量歷線之方法論;主要是應用自組特徵映射網路(SOM)進行颱風路徑分類,並依不同颱風路徑分類定義其流量特徵曲線,即可從集水區總降雨量預報資料,套配出全洪程流量歷線。本模式分為颱風路徑分類與水庫入流量套配兩階段步驟;在颱風路徑分類階段,將颱風路徑之經緯坐標轉換為網格向量,以SOM將颱風路徑網格向量進行分類,產生颱風路徑分類之拓樸圖,進而製作拓樸圖中各神經元之流量特徵曲線及統計資料;在流量預測階段,以測試颱風事件進行流量預測,將颱風路徑進行分類,進而以颱風被分配至某神經元的流量特徵曲線、逕流係數及氣象局預報的總降雨量,即可進行颱風全洪程流量預測。
結果顯示,路徑拓樸圖中可看出各神經元皆表現出有別於其他神經元的颱風路徑,而神經元與鄰近神經元間之拓樸關係,亦能些微分類出颱風路徑之差異,且各神經元之颱風路徑及其洪峰位置相當接近,而大部分神經元中所屬之流量特徵曲線相似度極高,僅少數神經元有較大差異;全洪程流量預測模式能夠提前掌握其流量趨勢,並準確預測洪峰時間,洪峰量及總入流量亦在接受範圍內,推估之流量歷程與實際流量歷程相關係數極高。


Taiwan is often attacked by typhoons due to its geographic location in Monsoon Asia. This island suffers from severe typhoon threats during summer and autumn in each year, and different typhoon paths may cause different disasters in Taiwan. For example, the heavy rainfall coupled with high intensity induced by Typhoons AERE (2004), KROSA (2007), MOLAVE (2009), SAOLA (2012) and SOULIK (2013) brought disasters in northern, middle and southern Taiwan, which made great challenges to reservoir operators. Taiwan has small catchments, steep-sloped terrains and rapid river flow. Therefore the development of forecast models for river flow or reservoir inflow are mainly of short-term scales, e.g. hourly forecasting, for providing a shorter response time to disaster management and flood mitigation. If we can provide flow prediction for the whole typhoon period before a typhoon hits Taiwan, it will help to make the regulation strategy of reservoir discharge and provide the reference guide of real-time flood control operation. In this study, we analyze the relationship between the classification of typhoon paths and reservoir inflow patterns to propose the methodology of long-term inflow prediction during the whole typhoon period. The main idea is to first classify typhoon paths by using the self-organizing maps (SOM), then define the flow characteristic curves based on the classification results of typhoon paths, and consequently combine all the results with the total rainfall forecast of the catchment to obtain the desired long-term inflow prediction. The proposed model is divided into two stages: typhoon path classification; and reservoir inflow forecast. In the stage of typhoon path classification, the latitude and longitude coordinates of each typhoon path are converted into a grid vector, and the SOM is used to classify all the grid vectors to generate a topological map of typhoon paths. As a result, the flow characteristic curve and statistics of each neuron in the topological map can be obtained. In the stage of reservoir inflow forecast, we use the testing typhoon events to make inflow forecasts. The typhoon path of each testing event is classified into a neuron of the SOM. Then long-term inflow prediction can be made for the whole typhoon period based on the flow characteristic curve, the runoff coefficient and the total rainfall forecast (provided by the Central Bureau in Taiwan) of the neuron into which the testing typhoon event is classified. The results indicate that the performances of the neurons in the topological map of typhoon paths are distinct from each other, and the topological relationship between a neuron and its neighboring neurons also shows slight differences in typhoon paths. Besides, the typhoon paths and peak flows in each neuron are quite similar, and the flow characteristic curves of most of the neurons in the SOM shows high similarity. The proposed inflow prediction model can grasp the trend for the whole typhoon period and accurately predict the timing of peak flow before a typhoon hits Taiwan. Results indicate that peak flow and total forecasted inflow also fall within the acceptable range, and the predicted and actual flow hydrographs produce a high correlation coefficient.

謝誌 I
摘要 III
ABSTRACT V
目錄 VII
表目錄 IX
圖目錄 X
一、前言 1
1.1 研究動機與目的 1
1.2研究方法 3
1.3論文章節架構 3
二、文獻回顧 4
2.1 颱風路徑之相關研究 4
2.2自組特徵映射類神經網路之應用 6
三、理論概述 8
3.1類神經網路 8
3.2自組特徵映射網路 11
3.2.1自組特徵映射網路架構 11
3.2.2自組特徵映射網路演算法 13
3.2.3自組特徵映射網路參數設定 17
四、研究案例 19
4.1研究區域 19
4.2資料蒐集 20
4.3模式架構 23
4.4評估指標 32
4.5結果分析 34
五、結論與建議 76
5.1結論 76
5.2建議 78
參考文獻 80
附錄A-颱風基本資料表 83
附錄B-訓練颱風事件分類表 86
附錄C-各神經元颱風洪峰位置圖表 88
附錄D-不同網路大小之拓墣圖 97


1.Alvarez-Guerra, M., González-Piñuela, C., Andrés, A., Galán, B., Viguri, J.R., 2008. Assessment of Self-Organizing Map artificial neural networks for the classification of sediment quality. Environment International 34, 782-790.
2.Borges, C., Gómez-Carracedo, M.P., Andrade, J.M., Duarte, M.F., Biscaya, J.L., Aires-de-Sousa, J., 2010. Geographical classification of weathered crude oil samples with unsupervised self-organizing maps and a consensus criterion. Chemometrics and Intelligent Laboratory Systems 101, 43-55.
3.Braitenberg, V., 1986. Two view of the cerebral cortex. In Brain Theory. G. Palm and A. Aertsen. eds. New York: Springer-Verlag, 81-96.
4.Chang, F.J. and Chang, L.C., 2007. Enforced self-organizing map neural networks for river flood forecasting. Hydrological Processes, 21:741–749.
5.Chang, F.J., Chang, L.C., Kao, H.S., Wu, G.R., 2010. Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network. Journal of Hydrology 384, 118-129.
6.Chang, L.C., Shen, H.Y., Chang, F.J., 2014. Regional flood inundation nowcast using hybrid SOM and dynamic neural networks. Journal of Hydrology 519, 476-489.
7.Ghaseminezhad, M.H., Karami, A., 2011. A novel self-organizing map (SOM) neural network for discrete groups of data clustering. Applied Soft Computing 11, 3771-3778.
8.Kohonen, T., 1982. Self-Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics, 43(1):59-69.
9.Lazaro, J., Arias, J.L., Zuloaga, A. and Cuadrado, C., 2006. SOM segmentation of gray scale images for optical recognition. Pattern Recognition Letters, 27:1991-1997.
10.Lin, G.F., Wu, M.C., 2009. A hybrid neural network model for typhoon-rainfall forecasting. Journal of Hydrology 375, 450-458.
11.Miller, R., 1987. Representation of Brief Temporal Patterns, Hebbian Synapses, and the Left-Hemisphere Dominance for Phoneme Recognition. Psychobiology, 15(3):241-247.
12.Mingoti, S.A., Lima, J.O., 2006. Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms. European Journal of Operational Research 174, 1742-1759.
13.Richardson, A.J., Risien, C. and Shillington, F.A., 2003. Using self-organizing maps to identify patterns in satellite imagery. Progress in Oceanography, 59: 223–239.
14.Rozanova, O.S., Yu, J.L., Hu, C.K., 2010. Typhoon eye trajectory based on a mathematical model: Comparing with observational data. Nonlinear Analysis: Real World Applications 11, 1847-1861.
15.Terry, J.P., Feng, C.C., 2010. On quantifying the sinuosity of typhoon tracks in the western North Pacific basin. Applied Geography 30, 678-686.
16.中央氣象局,2004,颱風百問。
17.石棟鑫,2001,「台灣地區颱風雨降雨型態之分析研究」,國立中央大學大氣物理研究所碩士論文。
18.吳佳蓉,2008,「颱風路徑之客觀分析方法」,國立中央大學土木工程研究所碩士論文。
19.吳瑞賢、蘇文瑞、廖偉民,2004,「歷年颱風降雨與災害特性分析之研究」,第八屆海峽兩岸水利科技交流研討會。
20.高惠珊,2007,「以自組特徵映射網路推估蒸散量」,臺灣大學生物環境系統工程所碩士論文。
21.陳政安,2011,「侵台颱風路徑變化對台灣降雨影響」,中國文化大學理學院地學研究所大氣科學組碩士論文。
22.陳舒雅,2002,「地形對颱風路徑的影響之數值探討」,國立中央大學地球科學學院大氣物理研究所碩士論文。
23.許惠茵,2010,「類神經網路結合衛星影像與氣象資料於颱風雨量推估之研究」,私立淡江大學水資源及環境工程學研究所碩士論文。
24.張斐章、張麗秋,2010,「類神經網路」,滄海書局。
25.葉天降、吳石吉、謝信良,1998,「臺灣附近颱風路徑預報校驗與統計方法之應用」大氣科學。
26.經濟部水利署北區水資源局,2005,石門水庫營運四十年特刊。
27.謝信良、王時鼎、鄭明典、葉天降,1998,「百年侵颱路徑圖集及其應用」,中央氣象局。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top