跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 05:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:傅群
研究生(外文):Chun Fu
論文名稱:外殼晝光利用對空調及照明耗能影響之研究
論文名稱(外文):The Effect of Daylighting Utilization for Different Building Envelope Design on HVAC and Lighting Energy
指導教授:黃國倉黃國倉引用關係
指導教授(外文):Kuo-Tsang Huang
口試委員:黃瑞隆林子平王仁俊
口試委員(外文):Ruey-Lung HwangTzu-Ping LinJen-Chun Wang
口試日期:2015-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:57
中文關鍵詞:晝光利用視覺舒適度建築能源模擬光環境模擬建築外殼設計
外文關鍵詞:daylight utilizationvisual comfortbuilding energy simulationdaylighting environment simulationbuilding envelope design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣身處在亞熱帶的地區,全年強烈的直達日射及熱季較長的情況下,為了解決建築室內環境的高溫,需要消耗相當大量的空調能源。因此,常見的建築外殼設計策略有增設外遮陽板、縮減開口率、改變使用的玻璃材質等,藉由阻擋或減少直射進入室內的輻射熱來降低空調耗能,但是,也因此阻絕了部分晝光進入室內,而可能需要額外的人工照明以彌補照明量,如此一來,不但造成照明耗能增加,照明所連帶的發散熱也會造成額外的空調能源消耗。
除了建築能源的考量外,室內環境中的視覺舒適度也是需要被考慮的。過去有研究指出,視覺舒適度對人員的工作效率和學習效率是有正面影響的,而良好的外殼設計除了有助於提升視覺舒適度,也可以避免過亮晝光所帶來的不舒適感,所以,本研究會同時探討外殼設計對建築能源及視覺舒適度的影響。
為了深入了解不同外殼設計所致影響,本研究探討了不同室型、遮陽板設計、玻璃材質選用等因子,透過了光環境模擬軟體DAYSIM和建築能源模擬軟體EnergyPlus,對全因子配列的1458個不同外殼設計辦公空間,分別進行光環境和建築能源的模擬,而後進行結果數據的ANOVA(變異數分析)統計分析和相關探討,以得到各外殼設計策略的影響效果和挑選最佳的外殼設計組合。由於建築能源和視覺舒適度屬不同種類指標而難以挑選出最佳方案,因此,本研究透過引用文獻的人員生產力計算公式,將室內環境品質轉換為人員工作效率,以進行經濟上的評估和比較。
研究成果顯示,視覺舒適度和建築節能大致上呈現正相關,若提升可利用晝光比率(Useful Daylight Index, UDI(300-2000)),因晝光利用而帶來的照明節能和因發散熱減少的空調節能都會相當顯著;外殼設計策略上,室型、開口率和玻璃材質都有相當大的影響效果,然而,這些因子在建築能源間或與視覺舒適度間會出現需要權衡的情況,如開口率40%時相較總平均值有1.7 kWh/m2.a的空調節能效果,但也有-1.4%的UDI(300-2000)負效果,因此必須謹慎的挑選因子的水準;三種室型之中,具有最佳視覺舒適度及建築節能的是寬長型室型,因為採光較易而容易提升晝光品質,也能因此節省下建築能源,若和全開燈和大開窗的基線建築相比,在UDI(300-2000)最多可改善33.4%,在UDI(>2000)最多可改善62.6%,在建築能源最多可改善56.9%(空調為33.8%,照明為23.0%)。


In Taiwan, which is in the subtropical area in Asia, there is much intensive beam radiation among whole year, and the hot season is longer than cold one. To resolve the problem of indoor high temperature, a large amount of HVAC energy needs to be consumed. Thus, some common strategies for building envelope design are exterior shading device, reducing the WWR (Window to Wall Ratio), or changing the glazing types. By blocking or reducing part of the radiation heat from outdoors, it helps to save more HVAC energy consumption. However, those strategies also hinders some daylight from entering into the room, therefore increasing additional artificial lighting to compensate for the lack of lights. So, lighting energy increases, and the heat gain from the lighting system also causes additional cooling energy.
In addition to consideration of building energy, visual comfort in indoor environment needs to be considered as well. Previous studies have pointed out that visual comfort have positive impact on both work and learning efficiency. A well designed building envelope can both enhance visual comfort and avoid the discomfort caused by excessive daylight. So, the impact of different building envelope designs on both building energy and visual comfort are conducted in this study.
In order to deeply understand influence of different building envelope design, this study investigated several factors, such as room shapes, shading device designs, glazing types, and so on. Through daylighting simulation tool (DAYSIM) and building energy simulation tool (EnergyPlus), totally 1458 office cases with different envelope designs are simulated. Then, the simulation results were analyzed through ANOVA (Analysis of variance) and discussed so as to find out influence of each factor and some optimal building envelope designs. Since building energy could not be compared with visual comfort directly, it’s hard to find the best one among all cases. Hence, according to a formula from a citation, which can convert Indoor Environment Quality (IEQ) index into human productivity, in order to evaluate and compare each case on an economic basis.
The simulation results shows that visual comfort is positively correlated with energy saving benefits. If UDI (Useful Daylight Index) is enhanced, the energy-saving benefits from less lighting demand and decreased HVAC energy due to less heat gain from lighting device will be significant. Among all factors of building envelope design, room shape, WWR, and glazing types are the most influential. However, sometimes there are compromise between building energy and visual comfort in these factors. For example, WWR of 40% has a mean effect of 1.7 kwh/m2.a, which is compared to the total average of performance, but it also has negative impact of -1.4% on UDI(300-2000). As a result, it’s necessary to carefully pick proper level of the factor. Among the three room shapes, the wider one has the best visual comfort and energy-saving benefit. Because it’s easier to utilize the daylight and improves the quality of indoor daylight, more building energy could be saved. If compared to baseline, which is set as light-on during workhour and WWR of 80%, UDI(300-2000) could be improved by 33.4%, and UDI(>2000) could be reduced by 62.6%. In terms of building energy, it could be reduced by totally 56.9% (33.8% for HVAC energy, and 23.0% for lighting energy).


謝誌 i
中文摘要 iii
英文摘要 v
目錄 vii
圖目錄 ix
表目錄 xi

第一章 研究動機與目的 1
1-1 研究動機 1
1-2 研究目的 2
1-3 研究流程 3

第二章 文獻回顧 5
2-1 晝光利用相關文獻 5
2-1.1 晝光利用對人員效率的影響 5
2-1.2 晝光利用對建築能源的影響 6
2-1.3 晝光利用對建築能源和視覺舒適度的影響 6
2-2 熱舒適度相關理論 9

第三章 研究方法 11
3-1 模擬工具介紹 11
3-1.1 EnergyPlus簡介 11
3-1.2 DAYSIM簡介 12
3-2 視覺舒適度和晝光利用指標介紹 15
3-2.1 Daylight Factor 15
3-2.1 Useful Daylight Index (UDI) 15
3-3 室內環境指標與人員生產力計算 16
3-4 柏拉圖最佳解 21

第四章 研究對象與選用因子 23
4-1 研究對象設定與說明 23
4-2 選用因子介紹 25
4-3 基線建築介紹 28

第五章 晝光模擬實測驗證 29
5-1 數值模型驗證方法 29
5-2 量測儀器介紹 32
5-3 模擬與實測結果比對 32

第六章 模擬分析與討論 35
6-1 晝光利用分析 35
6-2 建築耗能分析 37
6-3 辦公人員生產力分析 40
6-4 綜合分析 42
6-4.1 不分室型討論 42
6-4.2 分開室型討論 45

第七章 結論與建議 53
7-1 結論 53
7-2 建議 55

參考文獻 56


[1]Heschong, L., Skylighting and Retail Sales: An Investigation into the Relationship Between Daylighting and Human Performance. 1999.
[2]Heschong, L., R.L. Wright, and S. Okura, Daylighting impacts on human performance in school. Journal of the Illuminating Engineering Society, 2002. 31(2): p. 101-114.
[3]陳聖仙, 建築節能設計經濟效益評估:外殼、晝光、照明、空調之綜合評估, 1995, 國立成功大學碩士論文
[4]陳逸倫, 電腦模擬建築物自然採光與外部遮陽節約能源綜合評估之研究, 2001, 淡江大學碩士論文
[5]吳俊毅, 建築外遮陽設施對室內自然採光與節約能源綜合評估研究---以澎湖地區48方位為例, 2008, 淡江大學碩士論文
[6]Ho, M.-C., et al., Optimal sun-shading design for enhanced daylight illumination of subtropical classrooms. Energy and Buildings, 2008. 40(10): p. 1844-1855.
[7]David, M., et al., Assessment of the thermal and visual efficiency of solar shades. Building and Environment, 2011. 46(7): p. 1489-1496.
[8]Reinhart, C.F. and J. Wienold, The daylighting dashboard – A simulation-based design analysis for daylit spaces. Building and Environment, 2011. 46(2): p. 386-396.
[9]Yun, G., K.C. Yoon, and K.S. Kim, The influence of shading control strategies on the visual comfort and energy demand of office buildings. Energy and Buildings, 2014. 84(0): p. 70-85.
[10]Fanger, P.O., Thermal comfort: analysis and applications in environmental engineering. 1970: McGraw-Hill.
[11]Standardization, I.O.f., ISO 7730: Moderate Thermal Environments - Determination of the PMV and PPD Indices and Specification of the Conditions for Thermal Comfort. 1994: ISO.
[12]Hopkinson, R.G., J. Longmore, and P. Petherbridge, An Empirical Formula for the Computation of the Indirect Component of Daylight Factors. Transaction of the Illuminating Engineering Society (London), 1954. 19(7): p. 201-218.
[13]Lynes, J.A., Principles of natural lighting. 1968, London: Applied Science Publishers.
[14]Ramos, G. and E. Ghisi, Analysis of daylight calculated using the EnergyPlus programme. Renewable and Sustainable Energy Reviews, 2010. 14(7): p. 1948-1958.
[15]Cohen, M.F. and J.R. Wallace, Radiosity and Realistic Image Synthesis. 2012: Elsevier Science.
[16]Larson, G.W. and R. Shakespeare, Rendering With Radiance: The Art And Science Of Lighting Visualization. 2004: Booksurge Llc.
[17]Chu, V. 3D場景之燈光設定. 2003; http://www.e-waves.com/dna_0703.htm
[18]Reinhart, C.F. and O. Walkenhorst, Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds. Energy and Buildings, 2001. 33(7): p. 683-697.
[19]Reinhart, C. and B. Pierre-Felix, Experimental validation of autodesk® 3ds max® design 2009 and daysim 3.0. LEUKOS - Journal of Illuminating Engineering Society of North America, 2009. 6(1): p. 7-35.
[20]Tregenza, P. and I. Waters, Daylight coefficients. Lighting Research and Technology, 1983. 15(2): p. 65-71.
[21]Hensen, J.L.M. and R. Lamberts, Building Performance Simulation for Design and Operation. 2012: Taylor & Francis.
[22]Moon, P. and D.E. Spencer, Illumination from a non-uniform sky. 1942.
[23]Nabil, A. and J. Mardaljevic, Useful daylight illuminances: A replacement for daylight factors. Energy and Buildings, 2006. 38(7): p. 905-913.
[24]Nabil, A. and J. Mardaljevic, Useful daylight illuminance: A new paradigm for assessing daylight in buildings. Lighting Research and Technology, 2005. 37(1): p. 41-59.
[25]Jin, Q., M. Overend, and P. Thompson, Towards productivity indicators for performance-based façade design in commercial buildings. Building and Environment, 2012. 57(0): p. 271-281.
[26]La Gennusa, M., et al., The calculation of the mean radiant temperature of a subject exposed to the solar radiation—a generalised algorithm. Building and Environment, 2005. 40(3): p. 367-375.
[27]Rizzo, G., G. Franzitta, and G. Cannistraro, Algorithms for the calculation of the mean projected area factors of seated and standing persons. Energy and Buildings, 1991. 17(3): p. 221-230.
[28]內政部建築研究所, 綠建築解說與評估手冊. 2009, 台北: 內政部建築研究所.
[29]周鼎金, 學校教室照明與節能參考手冊. 2004, 臺北市: 教育部.
[30]Santamouris, M. and D.N. Asimakopoulos, Energy and Climate in the Urban Built Environment. BEST (Buildings, Energy and Solar Technology) Series. 2001: James & James.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top