跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 13:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林子渝
研究生(外文):Tzu-Yu Lin
論文名稱:影響台灣烏腳病疫區含砷地下水砷移動因素之探討
論文名稱(外文):Factors affecting arsenic mobilization for arsenic-contaminated groundwater in Blackfoot disease endemic region in Taiwan
指導教授:廖秀娟廖秀娟引用關係
指導教授(外文):Vivian Hsiu-Chuan Liao
口試委員:沈偉強林立虹童心欣
口試委員(外文):Wei-Chiang ShenLi-Hung LinHsin-Hsin Tung
口試日期:2014-07-02
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:70
中文關鍵詞:移動性烏腳病肥料地下水微生物群相
外文關鍵詞:arsenicmobilizationblackfoot diseasefertilizersgroundwatermicrobial community
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
地下水中砷的汙染,在世界各地皆造成嚴重的人體危害,而導致地下水中砷濃度升高的因素,仍有待探討。台灣等許多國家的研究發現,砷汙染案例多位於農業用地,然而農業行為中肥料的施用對地下水中砷移動性的影響,尚未明確。本研究的主要目的有二,一為調查台灣烏腳病疫區與非烏腳病疫區間微生物族群的差異;二為研究烏腳病疫區土壤樣品中,肥料的施用與微生物,對於砷由底泥釋放至地下水之影響。本研究分別使用烏腳病疫區與非烏腳病疫區之底泥,添加無機氮肥與磷肥後,並培養於好氧與厭氧環境2及4個月。研究結果顯示,經過2個月的培養,烏腳病疫區與非烏腳病疫區之樣品,顯示相當不同的微生物群相。當添加25與100 mg/L磷肥並培養於厭氧環境4個月,人工地下水中的砷濃度明顯的增加,其中三價砷的濃度由66.4 ± 4.6 μg/L (未添加磷肥的未滅菌樣品) 上升至 81.6 ± 8.6 (添加25 mg/L磷肥的未滅菌樣品) 及110.5 ± 6.0 μg/L (添加100 mg/L 磷肥的未滅菌樣品)。相反的,添加氮肥的樣品並未顯示出砷移動性的增加。本研究同時也發現,在高砷濃度的磷肥樣品中,鐵、錳、鉀、納、鈣與鎂的濃度也相對增加,說明上述元素極有可能參與砷的釋出反應。除此之外,透過微生物群相的分析,本研究發現隨著人工地下水樣品中砷濃度的上升,優勢物種由α-Proteobacteria 轉變成β-及γ-Proteobacteria。本研究提供直接的證據,顯示磷肥與微生物的存在皆可調控烏腳病疫區中的砷由底泥釋出至地下水,故本研究建議,農業上肥料的施用行為須顧及其導致地下水砷汙染之潛在可能。

Arsenic (As) contamination of groundwater is a worldwide public health concern. Arsenic affected areas in Taiwan were reported mostly in farmland, yet the factors of arsenic mobilization in aquifer remain uncharacterized. This study investigated microbial communities between sediments from the blackfoot disease (BFD) and non-BFD endemic area. The results showed that after 2 months incubation, the microbial community showed significantly different in the BFD and non-BFD endemic area. In addition, the effects of fertilizers and microorganisms on arsenic mobilization in the sediments of the BFD endemic area were examined. Microcosm experiments were performed amending with inorganic nitrogenous or phosphorus fertilizers for 2 and 4 months under aerobic and anaerobic conditions. The results showed that microcosms amended with 25 and 100 mg/L phosphorus fertilizers (dipotassium phosphate) showed significant increases in arsenic concentrations in aqueous phases, with an arsenite (As(III)) concentration increase from 66.4 ± 4.6 μg/L (original non-sterilized sediments) to 81.6 ± 8.6 (25 mg/L dipotassium phosphate, non-sterilized sediments) and 110.5 ± 6.0 μg/L (100 mg/L dipotassium phosphate, non-sterilized sediments) under anaerobic condition. However, the addition of nitrogenous fertilizers (ammonium sulfate) showed little effect on the arsenic mobility. Moreover, concentrations of iron, manganese, potassium, sodium, calcium, and magnesium were increased in the aqueous amended with dipotassium phosphate, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicated that the dominant microbial phylum was shifted from α-Proteobacteria to β- and γ-Proteobacteria when the As(III) was increased and phosphate was added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of sedimentary arsenic to groundwater in the BFD region, suggesting that agricultural activity such as usage of fertilizers should be taken into consideration.

英文摘要 ................................................................................. I
中文摘要 ............................................................................. III
誌謝 ..................................................................................... IV
目錄 ..................................................................................... VI
圖次 ..................................................................................... IX
表次 ....................................................................................... X
第一章 研究動機 ............................................................... 1
第二章 文獻回顧及研究目的 ............................................ 3
2.1 環境中的砷 .................................................................... 3
2.2 微生物中砷的反應機制 ..................................................... 4
2.2.1 解毒機制的五價砷還原菌 ......................................... 4
2.2.2 三價砷氧化菌 ........................................................ 5
2.2.3 五價砷還原菌 ........................................................ 6
2.3 世界各地砷汙染疫區之概況 ............................................... 7
2.3.1 孟加拉與印度西孟加拉邦 ......................................... 8
2.3.2 智利 .................................................................... 8
2.3.3 美國 .................................................................... 9
2.3.4 台灣 .................................................................... 9
2.4 台灣農業肥料施用現況 .......................................................... 11
2.5 研究目的 .............................................................................. 15
第三章 材料與方法 ......................................................... 17
3.1 研究架構 .................................................................... 17
3.2 樣品採集及化學測定 ..................................................... 18
3.3 人工地下水 ................................................................. 18
3.4 氮磷肥實驗 ................................................................. 18
3.5 化學分析 .................................................................... 23
3.6 16S rRNA聚合酶連鎖反應 (polymerase chain reaction, PCR) .... 23
3.7 TA-cloning ................................................................... 23
3.8 DGGE ........................................................................ 24
3.9 菌種鑑定 .................................................................... 25
3.10 演化樹 (Phylogenetic tree) 分析 ...................................... 26
第四章 結果 ..................................................................... 28
4.1 烏腳病疫區與非疫區砷釋出之比較 ................................... 28
4.2 肥料添加對於底泥樣品中砷釋出的影響 ............................. 28
4.3 砷的釋出與其他元素之關係 ............................................ 36
4.4 微生物群相之變化 ........................................................ 38
4.4.1 不同區域隨砷的釋出微生物群相之變化 .................... 38
4.4.2 肥料對於砷的移動性及微生物群相之影響 ................. 40
第五章 討論 ..................................................................... 46
5.1 疫區與非疫區之砷釋出與微生物群相 ................................ 46
5.2 肥料的施用對環境中砷移動性之影響 ................................ 46
5.3 磷肥的施用影響地下水中多重元素的移動性 ....................... 47
5.4 磷肥的添加對微生物群相之影響 ...................................... 48
5.5 Clone library和DGGE分析微生物菌相之探討 ..................... 49
第六章 結論與未來研究建議 ........................................ 51
References ......................................................................... 53


Abernathy, C.O., Liu, Y.P., Longfellow, D., Aposhian, H.V., Beck, B., Fowler, B., Goyer, R., Menzer, R., Rossman, T., Thompson, C. and Waalkes, M., 1999. Arsenic: Health effects, mechanisms of actions, and research issues. Environ. Health Persp. 107 (7), 593-597.
Acharyya, S.K., Chakraborty, P., Lahiri, S., Raymahashay, B.C., Guha, S. and Bhowmik, A., 1999. Arsenic poisoning in the Ganges delta. Nature 401 (6753), 545-545.
Afkar, E., Lisak, J., Saltikov, C., Basu, P., Oremland, R.S. and Stolz, J.F., 2003. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol. Lett. 226 (1), 107-112.
Ahmann, D., Krumholz, L.R., Hemond, H.F., Lovley, D.R. and Morel, F.M.M., 1997. Microbial mobilization of arsenic from sediments of the Aberjona watershed. Environ. Sci. Technol. 31 (10), 2923-2930.
Ahmann, D., Roberts, A.L., Krumholz, L.R. and Morel, F.M.M., 1994. Microbe grows by reducing arsenic. Nature 371 (6500), 750-750.
ATSDR, 2013. Priority list of hazardous substances. http://www.atsdr.cdc.gov/spl/.
Bacquart, T., Bradshaw, K., Frisbie, S., Mitchell, E., Springston, G., Defelice, J., Dustin, H. and Sarkar, B., 2012. A survey of arsenic, manganese, boron, thorium, and other toxic metals in the groundwater of a West Bengal, India neighbourhood. Metallomics 4 (7), 653-659.
Bajkic, S., Narancic, T., Dokic, L., Dordevic, D., Nikodinovic-Runic, J., Moric, I. and Vasiljevic, B., 2013. Microbial diversity and isolation of multiple metal-tolerant bacteria from surface and underground pits within the copper mining and smelting complex bor. Arch. Biol. Sci. 65 (1), 375-386.
Basturea, G.N., Harris, T.K. and Deutscher, M.P., 2012. Growth of a bacterium that apparently uses arsenic instead of phosphorus is a consequence of massive ribosome breakdown. J. Biol. Chem. 287 (34), 28816-28819.
Beller, H.R., Chain, P.S.G., Letain, T.E., Chakicherla, A., Larimer, F.W., Richardson, P.M., Coleman, M.A., Wood, A.P. and Kelly, D.P., 2006. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitfificans. J. Bacteriol. 188 (4), 1473-1488.
Beller, H.R., Zhou, P., Legler, T.C., Chakicherla, A., Kane, S., Letain, T.E. and O''Day, P.A., 2013. Genorne-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans. Front. Microbiol. 4 (249). (doi: 10.3389/fmicb.2013.00249).
Bhattacharya, P., Welch, A.H., Stollenwerk, K.G., McLaughlin, M.J., Bundschuh, J. and Panaullah, G., 2007. Arsenic in the environment: Biology and Chemistry. Sci. Total Environ. 379 (2-3), 109-120.
Biswas, A., Gustafsson, J.P., Neidhardt, H., Halder, D., Kundu, A.K., Chatterjee, D., Berner, Z. and Bhattacharya, P., 2014. Role of competing ions in the mobilization of arsenic in groundwater of Bengal Basin: Insight from surface complexation modeling. Water Res. 55, 30-39.
Blum, J.S., Bindi, A.B., Buzzelli, J., Stolz, J.F. and Oremland, R.S., 1998. Bacillus arsenicoselenatis, sp. nov, and Bacillus selenitireducens, sp. nov: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch. Microbiol. 171 (1), 19-30.
Bobrowicz, P., Wysocki, R., Owsianik, G., Goffeau, A. and Ulaszewski, S., 1997. Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast 13 (9), 819-828.
Brammer, H. and Ravenscroft, P., 2009. Arsenic in groundwater: A threat to sustainable agriculture in South and South-East Asia. Environ. Int. 35 (3), 647-654.
Budinoff, C.R. and Hollibaugh, J.T., 2008. Arsenite-dependent photoautotrophy by an Ectothiorhodospira-dominated consortium. ISME J. 2 (3), 340-343.
Campaner, V.P., Luiz-Silva, W. and Machado. W., 2014. Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil. An. Acad. Bras. Cienc. http://dx.doi.org/10.1590/0001-37652014113712.
Challenger, F., 1951. Biological methylation. Adv. Enzymol. Biochem. 12, 429-491.
Chen, C.J., Chuang, Y.C., You, S.L., Lin, T.M. and Wu, H.Y., 1986a. A retrospective study on malignant neoplasms of bladder, lung and liver in blackfoot disease endemic area in Taiwan. Br. J. Cancer 53 (3), 399-405.
Chen, C.M., Misra, T.K., Silver, S. and Rosen, B.P., 1986b. Nucleotide-sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J. Biol. Chem. 261 (32), 5030-5038.
Chen, K.P., Wu, H.Y. and Wu, T.C., 1962. Epidemiologie studies on blackfoot disease in Taiwan: 3. Physicochemical characteristics of drinking water in endemic blackfoot disease areas. Memoirs Coll. Med. Natl. Taiwan Univ. 8, 115-129.
Chen, S.L., Dzeng, S.R., Yang, M.H., Chiu, K.H., Shieh, G.M. and Wai, C.M., 1994. Arsenic species in groundwaters of the blackfoot disease area, Taiwan. Environ. Sci. Technol. 28 (5), 877-881.
Cullen, W.R. and Reimer, K.J., 1989. Arsenic speciation in the environment. Chem. Rev. 89 (4), 713-764.
Cummings, D.E., Caccavo, F., Fendorf, S. and Rosenzweig, R.F., 1999. Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ. Sci. Technol. 33 (5), 723-729.
Das, H.K., Mitra, A.K., Sengupta, P.K., Hossain, A., Islam, F. and Rabbani, G.H., 2004. Arsenic concentrations in rice, vegetables, a fish in Bangladesh: A preliminary study. Environ. Int. 30 (3), 383-387.
Das, S., Patnaik, S.C., Sahu, H.K., Chakraborty, A., Sudarshan, M. and Thatoi, H.N., 2013. Heavy metal contamination, physico-chemical and microbial evaluation of water samples collected from chromite mine environment of Sukinda, India. Trans. Nonferrous Met. Soc. China 23 (2), 484-493.
Diorio, C., Cai, J., Marmor, J., Shinder, R. and Dubow, M.S., 1995. An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J. Bacteriol. 177 (8), 2050-2056.
Dunbar, J., Takala, S., Barns, S.M., Davis, J.A. and Kuske, C.R., 1999. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol. 65 (4), 1662-1669.
Duquesne, K., Lieutaud, A., Ratouchniak, J., Muller, D., Lett, M.C. and Bonnefoy, V., 2008. Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: From the strain isolation to the gene study. Environ. Microbiol. 10 (1), 228-237.
Ellis, P.J., Conrads, T., Hille, R. and Kuhn, P., 2001. Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 angstrom and 2.03 angstrom. Structure 9 (2), 125-132.
Frisbie, S.H., Ortega, R., Maynard, D.M. and Sarkar, B., 2002. The concentrations of arsenic and other toxic elements in Bangladesh''s drinking water. Environ. Health Persp. 110 (11), 1147-1153.
Gihring, T.M. and Banfield, J.F., 2001. Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol. Lett. 204 (2), 335-340.
Gihring, T.M., Druschel, G.K., McCleskey, R.B., Hamers, R.J. and Banfield, J.F., 2001. Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: Field and laboratory investigations. Environ. Sci. Technol. 35 (19), 3857-3862.
Giller, K.E., Witter, E. and McGrath, S.P., 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol. Biochem. 30 (10-11), 1389-1414.
Girouard, E. and Zagury, G.J., 2009. Arsenic bioaccessibility in CCA-contaminated soils: Influence of soil properties, arsenic fractionation, and particle-size fraction. Sci. Total Environ. 407 (8), 2576-2585.
Hallberg, K.B., Hedrich, S. and Johnson, D.B., 2011. Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae. Extremophiles 15 (2), 271-279.
Handley, K.M., Hery, M. and Lloyd, J.R., 2009. Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis. Environ. Microbiol. 11 (6), 1601-1611.
Harvey, C.F., Swartz, C.H., Badruzzaman, A.B.M., Keon-Blute, N., Yu, W., Ali, M.A., Jay, J., Beckie, R., Niedan, V., Brabander, D., Oates, P.M., Ashfaque, K.N., Islam, S., Hemond, H.F. and Ahmed, M.F., 2002. Arsenic mobility and groundwater extraction in Bangladesh. Science 298 (5598), 1602-1606.
Herbel, M.J., Blum, J.S., Hoeft, S.E., Cohen, S.M., Arnold, L.L., Lisak, J., Stolz, J.F. and Oremland, R.S., 2002. Dissimilatory arsenate reductase activity and arsenate-respiring bacteria in bovine rumen fluid, hamster feces, and the termite hindgut. FEMS Microbiol. Ecol. 41 (1), 59-67.
Hery, M., van Dongen, B.E., Gill, F., Mondal, D., Vaughan, D.J., Pancost, R.D., Polya, D.A. and Lloyd, J.R., 2010. Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. Geobiology 8 (2), 155-168.
Hossain, M.F., 2006. Arsenic contamination in Bangladesh - An overview. Agric. Ecosyst. Environ. 113 (1-4), 1-16.
Hsu, K.H., Froines, J.R. and Chen, C.J., 1997. Studies of arsenic ingestion from drinking water in northeastern Taiwan: Chemical speciation and urinary metabolites. In: Abernathy, C.O., Calderon, R.L., Chappell, W.R. (Eds.), Arsenic Exposure and Health Effects. Chapman Hall, London, pp. 190–209.
Hughes, M.F., 2002. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 133 (1), 1–16.
Islam, E., Dhal, P.K., Kazy, S.K. and Sar, P., 2011. Molecular analysis of bacterial communities in uranium ores and surrounding soils from Banduhurang open cast uranium mine, India: A comparative study. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 46 (3), 271-280.
Islam, F.S., Gault, A.G., Boothman, C., Polya, D.A., Charnock, J.M., Chatterjee, D. and Lloyd, J.R., 2004. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430 (6995), 68-71.
Jackson, B.P. and Miller, W.P., 2000. Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium species from iron oxides. Soil Sci. Soc. Am. J. 64 (5), 1616-1622.
Ji, G.Y. and Silver, S., 1992. Regulation and expression of the arsenic resistance operon from Staphylococcus Aureus plasmid pI258. J. Bacteriol. 174 (11), 3684-3694.
Jiang, J.Q., Ashekuzzaman, S.M., Jiang, A., Sharifuzzaman, S.M. and Chowdhury, S.R., 2013. Arsenic contaminated groundwater and its treatment options in Bangladesh. Int. J. Environ. Res. Public Health 10 (1), 18-46.
Johnston, R.B. and Sarkeri, M.H., 2007. Arsenic mitigation in Bangladesh: National screening data and case studies in three upazilas. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 42 (12), 1889-1896.
Kanso, S. and Patel, B.K.C., 2004. Phenylobacterium lituiforme sp. nov., a moderately thermophilic bacterium from a subsurface aquifer, and emended description of the genus Phenylobacterium. Int. J. Syst. Evol. Microbiol. 54, 2141-2146.
Kao, Y.H., Liu, C.W., Jang, C.S., Zanh, S.W. and Lin, K.H., 2011. Assessment of nitrogen contamination of groundwater in paddy and upland fields. Paddy Water Environ. 9 (3), 301-307.
Kaplan, D.I. and Knox, A.S., 2004. Enhanced contaminant desorption induced by phosphate mineral additions to sediment. Environ. Sci. Technol. 38 (11), 3153-3160.
Keis, S., Bennett, C.F., Ward, V.K. and Jones, D.T., 1995. Taxonomy and phylogeny of industrial solvent-producing clostridia. Int. J. Syst. Bacteriol. 45 (4), 693-705.
Kouras, A., Katsoyiannis, I. and Voutsa, D., 2007. Distribution of arsenic in groundwater in the area of Chalkidiki, Northern Greece. J. Hazard. Mater. 147 (3), 890-899.
Krafft, T. and Macy, J.M., 1998. Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur. J. Biochem. 255 (3), 647-653.
Kruger, M.C., Bertin, P.N., Heipieper, H.J. and Arsene-Ploetze, F., 2013. Bacterial metabolism of environmental arsenic-mechanisms and biotechnological applications. Appl. Microbiol. Biotechnol. 97 (9), 3827-3841.
Kulp, T.R., Hoeft, S.E., Asao, M., Madigan, M.T., Hollibaugh, J.T., Fisher, J.C., Stolz, J.F., Culbertson, C.W., Miller, L.G. and Oremland, R.S., 2008. Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science 321 (5891), 967-970.
Kuo, T.L., 1968. Arsenic content of artesian well water in endemic area of chronic arsenic poisoning. Rep. Inst. Pathol. Natl. Taiwan Univ. 20, 7-13.
Langner, H.W. and Inskeep, W.P., 2000. Microbial reduction of arsenate in the presence of ferrihydrite. Environ. Sci. Technol. 34 (15), 3131-3136.
Langner, H.W., Jackson, C.R., Mcdermott, T.R. and Inskeep, W.P., 2001. Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environ. Sci. Technol. 35 (16), 3302-3309.
Laverman, A.M., Blum, J.S., Schaefer, J.K., Phillips, E.J.P., Lovley, D.R. and Oremland, R.S., 1995. Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl. Environ. Microbiol. 61 (10), 3556-3561.
Li, P., Wang, Y.H., Jiang, Z., Jiang, H.C., Li, B., Dong, H.L. and Wang, Y.X., 2013. Microbial diversity in high arsenic groundwater in Hetao Basin of Inner Mongolia, China. Geomicrobiol. J. 30 (10), 897-909.
Liao, V.H.C., Chu, Y.J., Su, Y.C., Lin, P.C., Hwang, Y.H., Liu, C.W., Liao, C.M., Chang, F.J. and Yu, C.W., 2011. Assessing the mechanisms controlling the mobilization of arsenic in the arsenic contaminated shallow alluvial aquifer in the blackfoot disease endemic area. J. Hazard. Mater. 197, 397-403.
Lingens, F., Blecher, R., Blecher, H., Blobel, F., Eberspacher, J., Frohner, C., Gorisch, H., Gorisch, H. and Layh, G., 1985. Phenylobacterium Immobile gen. nov., sp. nov., a gram-negative bacterium that degrades the herbicide chloridazon. Int. J. Syst. Bacteriol. 35 (1), 26-39.
Macur, R.E., Jackson, C.R., Botero, L.M., McDermott, T.R. and Inskeep, W.P., 2004. Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ. Sci. Technol. 38 (1), 104-111.
Macy, J.M., Santini, J.M., Pauling, B.V., O''Neill, A.H. and Sly, L.I., 2000. Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Arch. Microbiol. 173 (1), 49-57.
Mailloux, B.J., Alexandrova, E., Keimowitz, A.R., Wovkulich, K., Freyer, G.A., Herron, M., Stolz, J.F., Kenna, T.C., Pichler, T., Polizzotto, M.L., Dong, H.L., Bishop, M. and Knappett, P.S.K., 2009. Microbial mineral weathering for nutrient acquisition releases arsenic. Appl. Environ. Microbiol. 75 (8), 2558-2565.
Marchesi, J.R., Sato, T., Weightman, A.J., Martin, T.A., Fry, J.C., Hiom, S.J. and Wade, W.G., 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64 (2), 795-799.
McArthur, J.M., Banerjee, D.M., Hudson-Edwards, K.A., Mishra, R., Purohit, R., Ravenscroft, P., Cronin, A., Howarth, R.J., Chatterjee, A., Talukder, T., Lowry, D., Houghton, S. and Chadha, D.K., 2004. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Appl. Geochem. 19 (8), 1255-1293.
Meunier, L., Koch, I. and Reimer, K.J., 2011. Effect of particle size on arsenic bioaccessibility in gold mine tailings of Nova Scotia. Sci. Total Environ. 409 (11), 2233-2243.
Muehe, E.M., Scheer, L., Daus, B. and Kappler, A. 2013. Fate of arsenic during microbial reduction of biogenic versus abiogenic As-Fe(III)-mineral coprecipitates. Environ. Sci. Technol. 47 (15), 8297-8307.
Mukhopadhyay, R. and Rosen, B.P., 1998. Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. FEMS Microbiol. Lett. 168 (1), 127-136.
Mukhopadhyay, R., Rosen, B.P., Pung, L.T. and Silver, S., 2002. Microbial arsenic: From geocycles to genes and enzymes. FEMS Microbiol. Rev. 26 (3), 311-325.
Mukhopadhyay, R., Shi, J. and Rosen, B.P., 2000. Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase. J. Biol. Chem. 275 (28), 21149-21157.
Neidhardt, H., Berner, Z.A., Freikowski, D., Biswas, A., Majumder, S., Winter, J., Gallert, C., Chatterjee, D. and Norra, S., 2014. Organic carbon induced mobilization of iron and manganese in a West Bengal aquifer and the muted response of groundwater arsenic concentrations. Chemical Geology 367, 51-62.
Newman, D.K., Kennedy, E.K., Coates, J.D., Ahmann, D., Ellis, D.J., Lovley, D.R. and Morel, F.M.M., 1997. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov.. Arch. Microbiol. 168 (5), 380-388.
Nickson, R., McArthur, J., Burgess, W., Ahmed, K.M., Ravenscroft, P. and Rahman, M., 1998. Arsenic poisoning of Bangladesh groundwater. Nature 395 (6700), 338-338.
Nickson, R., Sengupta, C., Mitra, P., Dave, S.N., Banerjee, A.K., Bhattacharya, A., Basu, S., Kakoti, N., Moorthy, N.S., Wasuja, M., Kumar, M., Mishra, D.S., Ghosh, A., Vaish, D.P., Srivastava, A.K., Tripathi, R.M., Singh, S.N., Prasad, R., Bhattacharya, S. and Deverill, P., 2007. Current knowledge on the distribution of arsenic in groundwater in five states of India. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 42 (12), 1707-1718.
Nickson, R.T., McArthur, J.M., Ravenscroft, P., Burgess, W.G. and Ahmed, K.M., 2000. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl. Geochem. 15 (4), 403-413.
Nordstrom, D.K., 2002. Public health - Worldwide occurrences of arsenic in ground water. Science 296 (5576), 2143-2145.
Nordstrom, D.K., Alpers, C.N., Ptacek, C.J. and Blowes, D.W., 2000. Negative pH and extremely acidic mine waters from iron mountain, California. Environ. Sci. Technol. 34 (2), 254-258.
Nriagu, J., Bhattacharya, P., Mukherjee, A., Bundschuh, J., Zevenhoven, R. and Loeppert, R., 2007. Arsenic in soil and groundwater: An overview. In: Bhattacharya, P., Mukherjee, A.B., Bundschuh, J., Zevenhoven, R., and Loeppert, R.H. (Eds.), Arsenic in soil and groundwater environment. Elsevier, Amsterdam, pp. 3-60.
Oremland, R.S. and Stolz, J.F., 2003. The ecology of arsenic. Science 300 (5621), 939-944.
Oremland, R.S. and Stolz, J.F., 2005. Arsenic, microbes and contaminated aquifers. Trends Microbiol. 13 (2), 45-49.
Oremland, R.S., Blum, J.S., Culbertson, C.W., Visscher, P.T., Miller, L.G., Dowdle, P. and Strohmaier, F.E., 1994. Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl. Environ. Microbiol. 60 (8), 3011-3019.
Oremland, R.S., Kulp, T.R., Blum, J.S., Hoeft, S.E., Baesman, S., Miller, L.G. and Stolz, J.F., 2005. A microbial arsenic cycle in a salt-saturated, extreme environment. Science 308 (5726), 1305-1308.
Osborne, T.H., Jamieson, H.E., Hudson-Edwards, K.A., Nordstrom, D.K., Walker, S.R., Ward, S.A. and Santini, J.M., 2010. Microbial oxidation of arsenite in a subarctic environment: Diversity of arsenite oxidase genes and identification of a psychrotolerant arsenite oxidiser. BMC Microbiol. 10 (205). (doi: 10.1186/1471-2180-10-205).
Rainey, F.A., Ward, N., Sly, L. I. and Stackebrandt, E., 1994. Dependence on the taxon composition of clone libraries for PCR amplified, naturally occurring 16S rDNA, on the primer pair and the cloning system used. Experientia 50 (9) 796-797.
Ranjard, L., Poly, F. and Nazaret, S., 2000. Monitoring complex bacterial communities using culture-independent molecular techniques: Application to soil environment. Res. Microbiol. 151 (3), 167-177.
Ren H.T., Jia, S.Y., Wu, S.H., Liu, Y., Hua, C. and Han, X., 2013. Abiotic oxidation of Mn(II) induced oxidation and mobilization of As(III) in the presence of magnetite and hematite. J. Hazard Mater. 254-255, 89-97.
Rhine, E.D., Garcia-Dominguez, E., Phelps, C.D. and Young, L.Y., 2005. Environmental microbes can speciate and cycle arsenic. Environ. Sci. Technol. 39 (24), 9569-9573.
Rhine, E.D., Phelps, C.D. and Young, L.Y., 2006. Anaerobic arsenite oxidation by novel denitrifying isolates. Environ. Microbiol. 8 (5), 899-908.
Rosen, B.P., 1999. Families of arsenic transporters. Trends Microbiol. 7, 207-212.
Rosen, B.P., Weigel, U., Karkaria, C. and Gangola, P., 1988. Molecular characterization of an anion pump. The arsA gene product is an arsenite (antimonate) -stimulated ATPase. J. Biol. Chem. 263 (7), 3067-3070.
Rowland, H.A.L., Pederick, R.L., Polya, D.A., Pancost, R.D., Van Dongen, B.E., Gault, A.G., Vaughan, D.J., Bryant, C., Anderson, B. and Lloyd, J.R., 2007. The control of organic matter on microbially mediated iron reduction and arsenic release in shallow alluvial aquifers, Cambodia. Geobiology 5 (3), 281-292.
Roy, P. and Saha, A., 2002. Metabolism and toxicity of arsenic: A human carcinogen. Curr. Sci. 82 (1), 38-45.
Saltikov, C.W., Cifuentes, A., Venkateswaran, K. and Newman, D.K., 2003. The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl. Environ. Microbiol. 69 (5), 2800-2809.
Saltikov, C.W., Wildman, R.A. and Newman, D.K., 2005. Expression dynamics of arsenic respiration and detoxification in Shewanella sp. strain ANA-3. J. Bacteriol. 187 (21), 7390-7396.
Sankar, M.S., Vega, M.A., Defoe, P.P., Kibria, M.G., Ford, S., Telfeyan, K., Neal, A., Mohajerin, T.J., Hettiarachchi, G.M., Barua, S., Hobson, C., Johannesson, K. and Datta, S., 2014. Elevated arsenic and manganese in groundwaters of Murshidabad, West Bengal, India. Sci. Total Environ. 488-489, 570-579.
Santini, J.M., Sly, L.I., Schnagl, R.D. and Macy, J.M., 2000. A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: Phylogenetic, physiological, and preliminary biochemical studies. Appl. Environ. Microbiol. 66 (1), 92-97.
Saunders, J.A., Lee, M.K., Uddin, A., Mohammad, S., Wilkin, R.T., Fayek, M. and Korte, N.E., 2005. Natural arsenic contamination of Holocene alluvial aquifers by linked tectonic, weathering, and microbial processes. Geochem. Geophy. Geosy. 6 (4), 1-7.
Seddique, A.A., Masuda, H., Mitamura, M., Shinoda, K., Yamanaka, T., Itai, T., Maruoka, T., Uesugi, K., Ahmed, K.M. and Biswas, D.K., 2008. Arsenic release from biotite into a Holocene groundwater aquifer in Bangladesh. Appl. Geochem. 23 (8), 2236-2248.
Shamim Uddin, M. and Kurosawa, K., 2011. Effect of chemical nitrogen fertilizer application on the release of arsenic from sediment to groundwater in Bangladesh. Procedia Environ. Sci. 4, 294-302.
Shi, W.P., Wu, J.H. and Rosen, B.P., 1994. Identification of a putative metal-binding site in a new family of metalloregulatory proteins. J. Biol. Chem. 269 (31), 19826-19829.
Signes-Pastor, A., Burlo, F., Mitra, K. and Carbonell-Barrachina, A.A., 2007. Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil. Geoderma 137 (3-4), 504-510.
Silver, S., 1998. Genes for all metals - a bacterial view of the periodic table. The 1996 Thom Award Lecture. J. Ind. Microbiol. Biot. 20 (1), 1-12.
Silver, S., Budd, K., Leahy, K.M., Shaw, W.V., Hammond, D., Novick, R.P., Willsky, G.R., Malamy, M.H. and Rosenberg, H., 1981. Inducible plasmid-determined resistance to arsenate, arsenite, and antimony(III) in Escherichia coli and Staphylococcus aureus. J. Bacteriol. 146 (3), 983-996.
Smedley, P.L. and Kinniburgh, D.G., 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17 (5), 517-568.
Smith, A.H., Goycolea, M., Haque, R. and Biggs, M.L., 1998. Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water. Am. J. Epidemiol. 147 (7), 660-669.
States, J.C., Barchowsky, A., Cartwright, I.L., Reichard, J.F., Futscher, B.W. and Lantz, R.C., 2011. Arsenic toxicology: Translating between experimental models and human pathology. Environ. Health Persp. 119 (10), 1356-1363.
Stolz, J.F. and Basu, P., 2002. Evolution of nitrate reductase: Molecular and structural variations on a common function. Chembiochem 3 (2-3), 198-206.
Stolz, J.F., Ellis, D.J., Blum, J.S., Ahmann, D., Lovley, D.R. and Oremland, R.S., 1999. Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the epsilon Proteobacteria. Int. J. Syst. Bacteriol. 49, 1177-1180.
Styblo, M., Yamauchi, H. and Thomas, D.J., 1995. Comparative in vitro methylation of trivalent and pentavalent arsenicals. Toxicol. Appl. Pharmacol. 135 (2), 172-178.
Sun, W.J., Sierra-Alvarez, R., Milner, L. and Field, J.A., 2010. Anaerobic oxidation of arsenite linked to chlorate reduction. Appl. Environ. Microbiol. 76 (20), 6804-6811.
Takai, K., Hirayama, H., Sakihama, Y., Inagaki, F., Yamato, Y. and Horikoshi, K., 2002. Isolation and metabolic characteristics of previously uncultured members of the order aquificales in a subsurface gold mine. Appl. Environ. Microbiol. 68 (6), 3046-3054.
Tamaki, S. and Frankenberger, W.T., 1992. Environmental biochemistry of arsenic. Rev. Environ. Contam. T. 124, 79-110.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S., 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28 (10), 2731-2739.
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G., 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25 (24), 4876-4882.
Thornton, I. and Farago, M., 1997. The geochemistry of arsenic. In: Abernathy, C.O., Calderon, R.L., Chappell, W.R. (Eds.), Arsenic Exposure and Health Effects. Chapman Hall, London, pp. 1–16.
Tokunaga, S. and Hakuta, T., 2002. Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere 46 (1), 31-38.
Tong, M., Yuan, S., Zhang, P., Liao, P., Alshawabkeh, A.N., Xie, X. and Wang, Y., 2014. Electrochemically induced oxidative precipitation of Fe(II) for As(III) oxidation and removal in synthetic groundwater. Environ. Sci. Technol. 48 (9), 5145-5153.
Tseng, W.P., Chu, H.M., How, S.W., Fong, J.M., Lin, C.S. and Yeh, S., 1968. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J. Natl. Cancer Inst. 40 (3), 453-463.
Vahter, M., 1999. Methylation of inorganic arsenic in different mammalian species and population groups. Sci. Prog. 82, 69-88.
Vallaeys, T.,Topp, E., Muyzer, G., Macheret, V., Laguerre, G., Rigaud, A. and Soulas, G., 1997. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiol. Ecol. 24 (3), 279-285.
van Geen, A., Cheng, Z., Jia, Q., Seddique, A.A., Rahman, M.W., Rahman, M.M. and Ahmed, K.M., 2007. Monitoring 51 community wells in Araihazar, Bangladesh, for up to 5 years: Implications for arsenic mitigation. J. Environ. Sci. Health Part A 42, 1729–1740.
Wasay, S.A., Parker, W., Van Geel, P.J., Barrington, S. and Tokunaga, S., 2000. Arsenic pollution of a loam soil: Retention form and decontamination. J. Soil Contam. 9 (1), 51-64.
Welch, A.H. and Lico, M.S., 1988. Aqueous geochemistry of ground water with high-concentrations of arsenic and uranium, Carson River Basin, Nevada. Chem. Geol. 70 (1-2), 19.
Welch, A.H., Lico, M.S. and Hughes, J.L., 1988. Arsenic in ground water of the Western United States. Groundwater 26 (3), 333-347.
Wolfe-Simon, F., Blum, J.S., Kulp, T.R., Gordon, G.W., Hoeft, S.E., Pett-Ridge, J., Stolz, J.F., Webb, S.M., Weber, P.K., Davies, P.C.W., Anbar, A.D. and Oremland, R.S., 2011. A bacterium that can grow by using arsenic instead of phosphorus. Science 332 (6034), 1163-1166.
Woolson, E.A., 1972. Effects of fertilizer materials and combinations on phytotoxicity, availability and content of arsenic in corn (maize). J. Sci. Food Agr. 23 (12), 1477-1481.
World Health Organization, 2008. Guidelines for drinking-water quality, third ed. (Geneva, Switzerland).
Wu, J.H. and Rosen, B.P., 1993. The arsD gene encodes a 2nd trans-acting regulatory protein of the plasmid-encoded arsenical aesistance operon. Mol. Microbiol. 8 (3), 615-623.
Yang, X.N., Huang, S., Wu, Q.H., Zhang, R.D. and Liu, G.L., 2013. Diversity and vertical distributions of sediment bacteria in an urban river contaminated by nutrients and heavy metals. Front. Env. Sci. Eng. 7 (6), 851-859.
Zaldivar, R., 1974. Arsenic contamination of drinking-water and foodstuffs causing endemic chronic poisoning. Beitr. Pathol. 151 (4), 384-400.
Zhu, J.Y., Zhang, J.X., Li, Q., Han, T., Xie, J.P., Hu, Y.H. and Chai, L.Y., 2013. Phylogenetic analysis of bacterial community composition in sediment contaminated with multiple heavy metals from the Xiangjiang River in China. Mar. Pollut. Bull. 70 (1-2), 134-139.
Zobrist, J., Dowdle, P.R., Davis, J.A. and Oremland, R.S., 2000. Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ. Sci. Technol. 34 (22), 4747-4753.
高安潔。2012。台灣烏腳病疫區含砷地下水釋出因子及其生物復育。國立台灣大學生物環境系統工程學系暨研究所碩士論文。
郭季華、陳明妮和莊士群。2009。環境水體中砷物種分析方法建立及應用。環境保護署環境檢驗所。
陳拱北。1976。烏腳病流行病學的研究,烏腳病之研究報告。台灣省烏腳病防治小組刊印,第三輯。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top