跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李偉如
研究生(外文):Wei-Ju Lee
論文名稱:極大化利用大豆膠製備多烯磷脂膽鹼之研究
論文名稱(外文):Maximization of the Preparation of Polyenylphosphatidylcholine from Soybean Gum
指導教授:蘇南維蘇南維引用關係
口試委員:李敏雄周志輝劉麗雲鍾玉明古國隆高彩華
口試日期:2015-07-23
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:136
中文關鍵詞:多烯磷脂膽鹼磷脂膽鹼雙亞麻油酸磷脂膽鹼磷脂乙醇胺RP-HPLC-ELSD轉磷脂醯基反應轉酯化反應
外文關鍵詞:polyenylphosphatidylcholinephosphatidylcholine12-dilinoleoyl-sn-glycero-3-phosphocholinephosphatidylethanolamineRP-HPLC-ELSDtransphosphatidylationacidolysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多烯磷脂膽鹼(polyenylphosphatidylcholine, PPC)是一類具有生物活性的磷脂膽鹼(phosphatidylcholine, PC),被認為具有保肝作用。本研究旨在探討最大化利用大豆膠以製備PPC。首先,本研究發展一種藉由RP-HPLC (reverse phase-high performance liquid chromatography)搭配ELSD (evaporative light scattering detector)定量卵磷脂中PPC分子組成的可行方法。分離條件係以C30管柱和乙腈/甲醇/三乙胺(40:58:2, v/v/v)等比移動相,流速1 mL/min,ELSD檢測之漂移管溫度為80°C和1.8 L/min的空氣流速。如同三酸甘油酯分子,我們發現 PC分子的理論碳數(theoretical carbon number, TCN)和滯留時間之間具有良好線性關係,可作為鑑定未知PC分子之依據。此外,由於PC分子的相對應答因子(relative response factor)彼此近似,因此,PC分子之含量可以其面積百分比代表。利用此分析方法分析大豆和葵花卵磷脂的PC分子組成,兩者均以1,2-dilinoleoyl-sn-glycero-3-phosphocholine (LLPC)、1-oleoyl-2-linoleoyl-sn-glycero-3-phosphocholine (OLPC)和1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PLPC)為主,其中LLPC的含量分別為40.6%和64.3%。相較大豆來源,葵花來源的卵磷脂和油脂皆不含次亞麻油酸。第二階段,磷脂乙醇胺(phosphatidylethanolamine, PE)是大豆卵磷脂中含量僅次於PC的主要磷脂質,利用酵素催化轉磷脂醯基反應(transphosphatidy- lization)之手段可將PE轉換成PC。大豆膠經溶劑區分得到的大豆卵磷脂(95%酒精可溶物),進一步利用矽膠管柱層析從大豆卵磷脂分離PE和PC,含量分別為86.4%和90.2%,回收率為71.8%和80.3%。Streptomycese sp.來源的磷脂酶D之磷脂醯基轉移能力較甘藍來源的磷脂酶D佳,可共價結合至戊二醛活化之磁性粒子成功製備固定化酵素。固定化磷脂酶D的最適反應pH值為7.0,反應溫度為37°C。探討基質濃度和鈣離子對固定化磷脂酶D催化轉磷脂醯基反應之影響,以確定最佳反應條件。轉磷脂醯基反應之最適條件係在含有120 mM鈣離子濃度,2.5 M膽鹼濃度和1活性單位(Unit, U)固定化磷脂酶D之乙酸乙酯/磷酸鹽緩衝溶液(pH 7.0)兩相系統,37°C下反應12小時,產物之PC轉換率可達到64.9%,同時有微量的磷脂酸(phosphatidic acid, PA)生成。固定化磷脂酶D在上述之最適條件下循環使用10次,仍無明顯的活性損失。然而,合成的PC其組成與大豆卵磷脂中的PC組成不同。主要以PLPC和LLPC為主,共佔72.4%,PPC含量為45.3%。第三階段,利用酵素性轉酯化反應(transesterification)合成結構PPC。反應材料的PC係利用矽膠管柱層析從大豆膠中回收與製備而得,製得之PC的含量為91.6%,回收率93.3%,LLPC含量為40.8%;另一反應物亞麻油酸係利用鹼水解葡萄籽油,並且搭配低溫溶劑結晶法製得,其產物之亞麻油酸回收率為25.0%,純度為87.5%。合成PPC之轉酯化反應所使用的固定化酵素為Lipozyme TLIM,探討最適化反應條件的結果顯示,反應溫度40°C、PC和亞麻油酸之莫耳比1:9和酵素使用量為20%的基質重量,不需額外添加水分,反應48小時後其PPC的含量為75.8%,產率為60.0%。此外,我們也將大豆PC以低溫溶劑區分方式,加入95%乙醇(1:25, w/v)在-7°C過濾,收集上清液發現PPC含量由40.8%提高至58.8%;沉澱部分再進行上述之酵素性轉酯化反應,將PPC含量從33.9%提高到72.2%。

Polyenylphosphatidylcholine (PPC), a subgroup of the bioactive agents in phosphatidylcholine (PC), has been indicated to possess liver-protective effects. This study aims to maximally utilize soybean gum to prepare PPC. First, we investigated a promising and feasible method to determine PC molecular species by reverse phase (RP)-high performance liquid chromatography (HPLC) equipped with an evaporative light scattering detector (ELSD). Chromatography was achieved using a C30 column and an isocratic mobile phase consisting of acetonitrile/methanol/triethylamine (40:58:2, v/v/v) at a flow rate of 1 mL/min, and ELSD detection was performed using 80°C for the drift tube and an air flow rate of 1.8 L/min. As triacylglycerol species, a linear correlation was observed between the retention time and theoretical carbon number (TCN) of individual PC species. In addition, owing to the relative response factors were close to each other, the content of PC species can be represented as the peak area ratio. The compositions of PC molecular species in soybean and sunflower lecithins were similar to each other, and the major PC molecular species were 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (LLPC), 1-oleoyl-2-linoleoyl-sn- glycero-3-phosphocholine (OLPC), and 1-palmitoyl-2-linoleoyl-sn-glycero-3- phosphocholine (PLPC). The contents of LLPC in soybean PC and sunflower PC were 40.6% and 64.3%, respectively. Second, phosphatidylethanolamine (PE) was one of the major phospholipids in soybean lecithin only lesser than PC. An enzymatic method was established to increase the PC portion by means of transphosphatidylization to convert PE to PC. PC and PE were separated from soybean lecithin (95% ethanol-soluble fraction) by silica gel chromatography with content of 86.4% and 90.2%, and recovery of 71.8% and 80.3%, respectively. Phospholipase D from Streptomycese sp. possessed better transphosphatidylization ability to convert PE to PC than phospholipase D from cabbage. Phospholipase D from Streptomycese sp. was immobilized by covalent binding to glutaraldehyde-activated magnetic particles. The optimum pH value and temperature of immobilized phospholipase D were pH 7.0 and 37°C, respectively. Reaction parameters of substrate and calcium ion concentrations were investigated to determine optimum conditions. The PC yield of the reaction product was 64.9%, achieved at 12 hours in the ethyl acetate/phosphate buffer (pH 7.0) system containing 120 mM Ca2+, 2.5 M choline chloride and 1 unit (U) of immobilized phospholipase D at 37°C. The immobilized phospholipase D could be repeatedly used for ten times and showed no significant activity loss. However, the PC molecular species compositions of synthesized PC were different from the origin PC in soybean lecithin. The synthesized PC was mainly composed of PLPC and LLPC, which were accounting for 72.4% while the PPC content was 45.3%. Last, structured lipid of PPC was synthesized from PC and linoleic acid. PC was obtained from soybean lecithin by silica gel chromatography with the content of 91.6% and recovery of 93.3%, moreover, the PPC content was 40.8%. Linoleic acid was prepared by low-temperature solvent crystallization with the purity of 87.5% and recovery of 25.0%. Lipozyme TLIM was selected to catalyze the acidolysis reaction. The optimal conditions were recommended to be 40°C, no water addition, substrate ratio 1:9 (linoleic acid/PC, mol/mol) and enzyme dosage 20% based on the total substrate weight. Under these conditions, the content of PPC was 75.8% and the yield of PC was up to 60.0%. In addition, the PPC content of supernatant could be increased from 40.8% to 58.8% after low-temperature solvent crystallization (95% ethanol, -7°C). The PPC content of residual PC fraction could be further elevated from 33.9% to 72.2% by acidolysis reaction.

目錄
摘要 I
Abstract III
圖目錄 IX
表目錄 XI
縮寫表 XII
第一章、 研究動機 1
第二章、 文獻回顧與探討 2
第2-1節、PPC簡介 2
2-1-1 PPC之定義 2
2-1-2 PPC之生理活性研究 3
第2-2節、大豆膠 9
2-2-1 卵磷脂之來源 9
2-2-2 油脂精煉與脫膠程序 11
2-2-3 大豆卵磷脂之組成、性質與應用 17
第2-3節、結構磷脂質 22
2-3-1 結構磷脂質之簡介 22
2-3-2 物理及化學性修飾磷脂質 25
2-3-3 基因工程修飾磷脂質 26
2-3-4酵素性修飾磷脂質 26
第2-4節、磷脂質在人體之消化、吸收與合成 33
2-4-1 磷脂質之消化與吸收 35
2-4-2 磷脂質在人體之合成 36
論文研究架構 39
第三章、發展卵磷脂中多烯磷脂膽鹼的定量方法:藉由RP-HPLC -ELSD 40
摘要 40
第3-1節、前言 41
第3-2節、材料與方法 45
3-2-1 試驗材料與試劑 45
3-2-2 RP-HPLC-ELSD分析L-α-PC組成 45
3-2-3以MALDI-TOF-MS鑑定PC分子組成 46
3-2-4分離卵磷脂中的PC 46
3-2-5 RP-HPLC-ELSD分析三酸甘油酯組成 47
3-2-6 數據分析 47
第3-3節、結果與討論 48
3-3-1 RP-HPLC-ELSD分析PC分子之組成 48
3-3-2 MALDI-TOF-MS鑑定PC分子種類 48
3-3-3 PC分子之滯留時間和TCN之間的關係 49
3-3-4 定量個別PC分子種類 51
3-3-5 大豆卵磷脂和葵花卵磷脂中的PC含量和PC組成分析 51
3-3-6 大豆和葵花卵磷脂中丙酮可溶物的三酸甘油酯組成 52
第四章、由磷脂乙醇胺和磷脂酶D轉磷脂醯基反應製備磷脂膽鹼 66
摘要 66
第4-1節、前言 67
第4-2節、材料與方法 70
4-2-1 試驗材料與試劑 70
4-2-2 從大豆膠中分離PE與PC 70
4-2-3 磷脂酶D催化磷脂醯基轉移反應之酵素選擇 71
4-2-4 以磁性奈米鐵粒子為載體製備固定化磷脂酶D 71
4-2-5 探討固定化磷脂酶D催化轉磷脂醯基反應之最適化條件 72
4-2-6 固定化磷脂酶D之重複利用性測試 73
4-2-7 數據分析 73
第4-3節、結果與討論 74
4-3-1 從大豆膠中製備反應基質PE 74
4-3-2 篩選磷脂酶D催化磷脂醯基轉移反應 74
4-3-3以磁性粒子為載體共價鍵結固定化磷脂酶D 75
4-3-4膽鹼濃度對固定化磷脂酶D催化磷脂醯基反應之效應 75
4-3-5鈣離子濃度對固定化磷脂酶D催化磷脂醯基反應之效應 76
4-3-6最適化條件下合成PC之轉化效率與PC分子組成 76
第五章、酵素性轉酯化反應增加卵磷脂中的多烯磷脂膽鹼含量 88
摘要 88
第5-1節、前言 89
第5-2節、材料與方法 92
5-2-1 實驗材料與試劑 92
5-2-2 從大豆膠中分離製備PC 92
5-2-3 市售植物油之脂肪酸組成分析 92
5-2-4以低溫溶劑結晶法製備亞麻油酸 93
5-2-5 篩選催化轉酯化反應合成結構PPC之酵素 93
5-2-6 最適化交酯化反應條件生產PPC 94
5-2-7 以低溫溶劑結晶法富集PPC 95
5-2-8 數據分析 95
第5-3節、結果與討論 96
5-3-1 利用矽膠管柱層析從大豆膠中回收PC 96
5-3-2低溫溶劑結晶法製備富含亞麻油酸之游離脂肪酸 96
5-3-3 轉酯化反應酵素之篩選 97
5-3-4 Lipozyme TLIM脂解酶催化轉酯化反應之最適化條件 98
5-3-5 結合低溫溶劑結晶法與轉酯化反應之兩步驟反應 101
第六章、結論與展望 116
參考文獻 117


古國隆 (1992) 大豆卵磷脂之區分及其衍生物之製備。國立臺灣大學農業化學系博士論文。
拱玉郎 (1995) 以脂肪酶催化交酯化製備含多元不飽和脂肪酸脂磷脂質。國立臺灣大學農業化學系碩士論文。
Akoh, C. C., & Min, D. B. (2008). Food lipids: chemistry, nutrition, and biotechnology. CRC Press.
Aleynik, M. K., Leo, M. A., Aleynik, S. I., & Lieber, C. S. (1999a). Polyenylphosphatidylcholine opposes the increase of cytochrome P-4502E1 by ethanol and corrects its iron-induced decrease. Alcoholism: Clinical and Experiment Research, 23(1), 96-100.
Aleynik, M. K., & Lieber, C. S. (2001a). Dilinoleoylphosphatidylcholine decreases ethanol-induced cytochrome P4502E1. Biochemical and Biophysical Research Communications, 288(4), 1047-1051.
Aleynik, S., Aleynik, M., & Lieber, C. S. (2001b). Dilinoleoylphosphatidylcholine (DLPC) protects against alcohol-induced oxidative stress in rats. Gastroenterology, 120(5), A116-A116.
Aleynik, S. I., Leo, M. A., Takeshige, U., Aleynik, M. K., & Lieber, C. S. (1999b). Dilinoleoylphosphatidylcholine is the active antioxidant of polyenylphosphatidylcholine. Journal of Investigative Medicine, 47(9), 507-512.
Aleynik, S. I., & Lieber, C. S. (2003). Polyenylphosphatidylcholine corrects the alcohol-induced hepatic oxidative stress by restoring s-adenosylmethionine. Alcohol and Alcoholism, 38(3), 208-212.
Altamirano, J., & Bataller, R. (2011). Alcoholic liver disease: pathogenesis and new targets for therapy. Nature Reviews Gastroenterology & Hepatology, 8(9), 491-501.
Aura, A. M., Forssell, P., Mustranta, A., & Poutanen, K. (1995). Transesterification of soy lecithin by lipase and phospholipase. Journal of the American Oil Chemists'' Society, 72(11), 1375-1379.
Baeza‐Jiménez, R., Noriega‐Rodríguez, J. A., García, H. S., & Otero, C. (2012). Structured phosphatidylcholine with elevated content of conjugated linoleic acid: Optimization by response surface methodology. European Journal of Lipid Science and Technology, 114(11), 1261-1267.
Balazs P. E., Schmit P. L., & Szuhaj B. E. (1996). High-performance liquid chromatographic separations of soy phospholipids. Journal of American Oil Chemists'' Society, 73(2), 193-197.
Bates, P. D., & Browse, J. (2012a). The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering. Frontiers in Plant Science, 3(147), 1-11.
Bates, P. D., Durrett, T. P., Ohlrogge, J. B., & Pollard, M. (2009). Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Plant Physiology, 150(1), 55-72.
Bates, P. D., Fatihi, A., Snapp, A. R., Carlsson, A. S., Browse, J., & Lu, C. F. (2012b). Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. Plant Physiology, 160(3), 1530-1539.
Berson, A., De Beco, V., Letteron, P., Robin, M. A., Moreau, C., El Kahwaji, J., Verthier, N., Feldmann, G., Fromenty, B., & Pessayre, D. (1998). Steatohepatitis-inducing drugs cause mitochondrial dysfunction and lipid peroxidation in rat hepatocytes. Gastroenterology, 114(4), 764-774.
Bickerstaff Jr., G. F. (1997). Immobilization of enzymes and cells. Springer.
Boron, W. F., & Boulpaep, E. L. (2012). Medical Physiology, 2e Updated Edition: with STUDENT CONSULT Online Access. Elsevier Health Sciences.
Boselli, E., Pacetti, D., Lucci, P., & Frega, N. G. (2012). Characterization of phospholipid molecular species in the edible parts of bony fish and shellfish. Journal of Agricultural and Food Chemistry, 60(12), 3234-3245.
Braillon, A., Capron, J. P., Herve, M. A., Degott, C., & Quenum, C. (1985). Liver in obesity. Gut, 26(2), 133-139.
Brouwers, J. F. H. M., Gadella, B. M., van Golde, L. M. G., & Tielens, A. G. M. (1998). Quantitative analysis of phosphatidylcholine molecular species using HPLC and light scattering detection. Journal of Lipid Research, 39(2), 344-353.
Brouwers, J. F. H. M., Vernooij, E. A. A. M., Tielens, A. G. M., & van Golde, L. M. G. (1999). Rapid separation and identification of phosphatidylethanolamine molecular species. Journal of Lipid Research, 40(1), 164-169.
Burton, J. W., Wilson, R. F., Rebetzke, G. J., & Pantalone, V. R. (2006). Registration of N98-4445A mid-oleic soybean germplasm line. Crop Science, 46(2), 1010-1012.
Cabezas, D., Diehl, B., Tomás, M., & Madoery, R. (2012). Emulsifying properties of hydrolized sunflower lecithins by phospholipases A2 of different sources. INTECH Open Access Publisher.
Cabezas, D. M., Diehl, B. W. K., & Tomas, M. C. (2009). Sunflower lecithin: application of a fractionation process with absolute ethanol. Journal of the American Oil Chemists'' Society, 86(2), 189-196.
Campbell, E. (1983). Sunflower oil. Journal of the American Oil Chemists’ Society, 60(2), 387-392.
Cao, Q., Mak, K. M., & Lieber, C. S. (2002a). Dilinoleoylphosphatidylcholine decreases LPS-induced TNF-α generation in Kupffer cells of ethanol-fed rats: respective roles of MAPKs and NF-κB. Biochemical and Biophysical Research Communications, 294(4), 849-853.
Cao, Q., Mak, K. M., & Lieber, C. S. (2002b). Dilinoleoylphosphatidylcholine prevents transforming growth factor-β1-mediated collagen accumulation in cultured rat hepatic stellate cells. Journal of Laboratory and Clinical Medicine, 139(4), 202-210.
Cao, W., Zhang, K., Tao, G., Wang, X., & Liu, Y. (2012). Identification of the fatty acyl residues composition and molecular species of phosphatidylcholines in soy lecithin powder by UPLC–ESI-MS/MS. Chromatographia, 75(21-22), 1271-1278.
Chen, S., & Subbaiah, P. V. (2013). Regioisomers of phosphatidylcholine containing DHA and their potential to deliver DHA to the brain: role of phospholipase specificities. Lipids, 48(7), 675-686.
Choi, J. M., Kim, T. E., Cho, J. Y., Lee, H. J., & Jung, B. H. (2014). Development of lipidomic platform and phosphatidylcholine retention time index for lipid profiling of rosuvastatin treated human plasma. Journal of Chromatography B, 944, 157-165.
Chojnacka, A., Gladkowski, W., Kielbowicz, G., & Wawrzenczyk, C. (2009). Enzymatic enrichment of egg-yolk phosphatidylcholine with alpha-linolenic acid. Biotechnology Letters, 31(5), 705-709.
Cohn, J. S., Kamili, A., Wat, E., Chung, R. W., & Tandy, S. (2010). Dietary phospholipids and intestinal cholesterol absorption. Nutrients, 2(2), 116-127.
Cohn, J. S., Wat, E., Kamili, A., & Tandy, S. (2008). Dietary phospholipids, hepatic lipid metabolism and cardiovascular disease. Current Opinion in Lipidology, 19(3), 257-262.
Coleman, R. A., Lewin, T. M., & Muoio, D. M. (2000). Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annual Review of Nutrition, 20, 77-103.
Cunha, S. C., & Oliveira, M. B. P. P. (2006). Discrimination of vegetable oils by triacylglycerols evaluation of profile using HPLC/ELSD. Food Chemistry, 95(3), 518-524.
Damnjanovic, J., & Iwasaki, Y. (2013). Phospholipase D as a catalyst: Application in phospholipid synthesis, molecular structure and protein engineering. Journal of Bioscience and Bioengineering, 116(3), 271-280.
DArrigo, P., & Servi, S. (1997). Using phospholipases for phospholipid modification. Trends in Biotechnology, 15(3), 90-96.
De Maria, L., Vind, J., Oxenboll, K. M., Svendsen, A., & Patkar, S. (2007). Phospholipases and their industrial applications. Applied Microbiology and Biotechnology, 74(2), 290-300.
Dircks, L. K., & Sul, H. S. (1997). Mammalian mitochondrial glycerol-3-phosphate acyltransferase. Biochim Biophys Acta, 1348(1-2), 17-26.
Dittrich, N. & Hofmann, R. U. (2010). Transphosphatidylation by immobilized phospholipase D in aqueous media. Biotechnology and Applied Biochemistry, 34(3), 189-194.
Doig, S. D., & Dilks, R. M. M. (2003). Toolbox for exchanging constituent fatty acids in lecithins. European Journal of Lipid Science and Technology, 105(7), 359-367.
Du, J. M., Hou, X. L., Wu, D., & Feng, C. P. (2011). Rapid and efficient gas chromatographic method for measuring the kinetics of lipase-catalyzed transesterification of phosphatidylcholine. Journal of Molecular Catalysis B-Enzymatic, 69(3-4), 103-106.
Duric, M., Sivanesan, S., & Bakovic, M. (2012). Phosphatidylcholine functional foods and nutraceuticals: A potential approach to prevent non‐alcoholic fatty liver disease. European Journal of Lipid Science and Technology, 114(4), 389-398.
El Kirat, K., Besson, F., Prigent, A. F., Chauvet, J. P., & Roux, B. (2002). Role of calcium and membrane organization on phospholipase D localization and activity. Competition between a soluble and insoluble substrate. Journal of Biological Chemistry, 277(24), 21231-21236.
Elhamdy, A. H., & Perkins, E. G. (1981). High-performance reversed phase chromatography of natural triglyceride mixtures - critical pair separation. Journal of the American Oil Chemists Society, 58(9), 867-872.
Frankel, J. S., Stoneburner, W., & Brown, J. B. (1943). Studies on the chemistry of the fatty acids XI The isolation of linoleic from vegetable oils by low temperature crystallization. Journal of the American Chemical Society, 65, 259-262.
Fuchs, B., Müller, K., Göritz, F., Blottner, S., & Schiller, J. (2007). Characteristic oxidation products of choline plasmalogens are detectable in cattle and roe deer spermatozoa by MALDI-TOF mass spectrometry. Lipids, 42(11), 991-998.
Galli, C., Sirtori, C. R., Mosconi, C., Medini, L., Gianfranceschi, G., Vaccarino, V., & Scolastico, C. (1992). Prolonged retention of doubly labeled phosphatidylcholine in human plasma and erythrocytes after oral-administration. Lipids, 27(12), 1005-1012.
Garcia, H. S., Kim, I. H., Lopez-Hernandez, A., & Hill, C. G. (2008). Enrichment of lecithin with n-3 fatty acids by acidolysis using immobilized phospholipase A1. Grasas y Aceites, 59(4), 368-374.
Guiotto, E. N., Cabezas, D. M., Diehl, B. W. K., & Tomas, M. C. (2013). Characterization and emulsifying properties of different sunflower phosphatidylcholine enriched fractions. European Journal of Lipid Science and Technology, 115(8), 865-873.
Gundermann, K. J. (1993). The essential phospholipids as a membrane therapeutic. Szczecin, Poland: JotA Press.
Gundermann, K. J., Kuenker, A., Kuntz, E., & Drozdzik, M. (2011). Activity of essential phospholipids (EPL) from soybean in liver diseases. Pharmacological Reports, 63(3), 643-659.
Gunstone, F. D., Harwood, J. L., & Dijkstra, A. J. (2007). The lipid handbook with CD-ROM. CRC Press.
Gunther, B.-R. (1984a). Process for the separation of acylated phospholipids from phosphatidylcholine products containing the same. Google Patents.
Gunther, B.-R. (1984b). Process for the separation of oils and/or phosphatidylethanolamine from alcohol soluble phosphatidylcholine products containing the same. Google Patents.
Gunther, B.-R., & Losch, R. (1991). Process for isolating a phosphatidylcholine free of other phospholipids in the starting material. Google Patents.
Guo, H., Yu, Y., Zhang, B., & Qian, J. Q. (2014). Preparation of high-purity phosphatidylcholine from rapeseed oil gums by cation ion-exchange resin (vol 238, pg 345, 2014). European Food Research and Technology, 238(2), 345-346.
Guo, H., Zhang, Z. Y., Qian, J. Q., & Liu, Y. (2013). Optimization of the liquid-liquid extraction of phosphatidyl-choline from rapeseed oil gums by response surface methodology. Industrial Crops and Products, 42, 500-506.
Guo, Z., Vikbjerg, A. F., & Xu, X. B. (2005). Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnology Advances, 23(3), 203-259.
Hirche, F., & Ulbrich-Hofmann, R. (2000). The interdependence of solvent, acceptor alcohol and enzyme source in transphosphatidylation by phospholipase D. Biocatalysis and Biotransformation, 18(5), 343-353.
Hishikawa, D., Hashidate, T., Shimizu, T., & Shindou, H. (2014). Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. Journal of Lipid Research, 55(5), 799-807.
Hossen, M., & Hernandez, E. (2005). Enzyme‐catalyzed synthesis of structured phospholipids with conjugated linoleic acid. European Journal of Lipid Science and Technology, 107(10), 730-736.
Jayaraman, T., Kannappan, S., Ravichandran, M. K., & Anuradha, C. V. (2008). Impact of Essentiale L on ethanol-induced changes in rat brain and erythrocytes. Singapore Medical Journal, 49(4), 320-327.
John, J. V., Park, H., Lee, H. R., Suh, H., & Kim, I. (2015). Simultaneous extraction of phosphatidylcholine and phosphatidylethanolamine from soybean lecithin. European Journal of Lipid Science and Technology. In press.
Johnson, L. A., White, P. J., Galloway, R., & Board, U. S. (2008). Soybeans: chemistry, production, processing, and utilization. AOCS Press.
Juneja, L. R., Yamane, T., & Shimizu, S. (1989). Studies on enzymatic conversion of phospholipids .5. Enzymatic method of increasing phosphatidylcholine content of lecithin. Journal of the American Oil Chemists'' Society, 66(5), 714-717.
Karabulut, I., Durmaz, G., & Hayaloglu, A. A. (2009). Fatty acid selectivity of lipases during acidolysis reaction between triolein and saturated fatty acids varying from caproic to behenic acids. Journal of Agricultural and Food Chemistry, 57(16), 7584-7590.
Kennedy, E. P., & Weiss, S. B. (1956). Function of cytidine coenzymes in the biosynthesis of phospholipides. Journal of Biological Chemistry, 222(1), 193-213.
Kim, I.-H., Garcia, H. S., & Hill, C. G. (2007). Phospholipase A1-catalyzed synthesis of phospholipids enriched in n− 3 polyunsaturated fatty acid residues. Enzyme and Microbial Technology, 40(5), 1130-1135.
Kim, I. H., Garcia, H. S., & Hill, C. G. (2010). Synthesis of structured phosphatidylcholine containing n-3 PUFA residues via acidolysis mediated by immobilized phospholipase A(1). Journal of the American Oil Chemists Society, 87(11), 1293-1299.
Krüger, S., Bürmann, L., & Morlock, G. E. (2015). Comparison and characterization of soybean and sunflower lecithins used for chocolate production by high-performance thin-layer chromatography with fluorescence detection and electrospray mass spectrometry. Journal of Agricultural and Food Chemistry.
Krosnjar, S., Todic, M., Bakic, S., Begovic, B., Zulic, I., & Vehabovic, M. (2005). Oral acute toxicity of polyenylphosphatidylcholine (PPC) in rats. Bosnian Journal of Basic Medical Sciences, 5(3), 63-68.
Le Grandois, J., Marchioni, E., Zhao, M. J., Giuffrida, F., Ennahar, S., & Bindler, F. (2009). Investigation of natural phosphatidylcholine sources: separation and identification by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS2) of molecular species. Journal of Agricultural and Food Chemistry, 57(14), 6014-6020.
Lee, J., Welti, R., Schapaugh, W. T., & Trick, H. N. (2011). Phospholipid and triacylglycerol profiles modified by phospholipase D suppression in soybean seed. Plant Biotechnology Journal, 9(3), 359-372.
Lee, W. J., Su, N. W., Lee, M. H., & Lin, J. T. (2013). Assessment of authenticity of sesame oil by modified Villavecchia test and HPLC-ELSD analysis of triacylglycerol profile. Food Research International, 53(1), 195-202.
Lei, L., Li, J., Hu, J. N., Liu, R., Fan, Y. W., Tang, L., & Deng, Z. Y. (2012). Separation of phospholipids from hen egg yolk by short packed silica gel column chromatography. Journal of Food Science, 77(9), C948-53.
Lekim, D., & Graf, E. (1976). Animal experimental studies on the pharmacokinetics of "essential" phospholipids (EPL). Arzneimittelforschung, 26(9a), 1772-1782.
Lewin, T. M., Kim, J. H., Granger, D. A., Vance, J. E., & Coleman, R. A. (2001). Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently. Journal of Biological Chemistry, 276(27), 24674-24679.
Li, J., Kim, C. I., Leo, M. A., Mak, K. M., Rojkind, M., & Lieber, C. S. (1992). Polyunsaturated lecithin prevents acetaldehyde-mediated hepatic collagen accumulation by stimulating collagenase activity in cultured lipocytes. Hepatology, 15(3), 373-381.
Li, X., Chen, J.-F., Yang, B., Li, D.-M., Wang, Y.-H., & Wang, W.-F. (2014). Production of structured phosphatidylcholine with high content of DHA/EPA by immobilized phospholipase A1-catalyzed transesterification. International Journal of Molecular Sciences, 15(9), 15244-15258.
Li, Z. Y., Agellon, L. B., Allen, T. M., Umeda, M., Jewel, L., Mason, A., & Vance, D. E. (2006). The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metabolism, 3(5), 321-331.
Lieber, C. S. (1994). Use of dilinoleoylphosphatidylcholine (DLPC) for treatment and preventaion of cirrhosis and fibrosis in the liver. United States Patent.
Lieber, C. S., Leo, M. A., Aleynik, S., Lowe, N., Aleynik, M. K., & Paronetto, F. (2000). Increased circulating level of dilinoleoylphosphatidylcholine is associated with protection against alcohol induced oxide stress and liver fibrosis in man. Hepatology, 32(4), 386a-386a.
Lieber, C. S., Leo, M. A., Cao, Q., Mak, K. M., Ren, C., Ponomarenko, A., Wang, X., & DeCarli, L. M. (2007). The combination of S-adenosylmethionine and dilinoleoylphosphatidylcholine attenuates nonalcoholic steatohepatitis produced by a high-fat diet in rats. Nutrition research, 27(9), 565-573.
Lieber, C. S., Robins, S. J., Li, J., DeCarli, L. M., Mak, K. M., Fasulo, J. M., & Leo, M. A. (1994). Phosphatidylcholine protects against fibrosis and cirrhosis in the baboon. Gastroenterology, 106(1), 152-159.
Lin, Y. C., Liu, Y. C., & Nakamura, Y. (2015). The choline/ethanolamine kinase family in Arabidopsis: Essential role of CEK4 in phospholipid biosynthesis and embryo development. Plant Cell, 27(5), 1497-1511.
Liu, Y. F., Shan, L., & Wang, X. G. (2009). Purification of soybean phosphatidylcholine using D113-III ion exchange macroporous resin packed column chromatography. Journal of the American Oil Chemists'' Society, 86(2), 183-188.
Louvet, A., & Mathurin, P. (2015). Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol, 12(4), 231-242.
Lucci, P., Pacetti, D., Calzuola, I., Marsili, V., Perni, S., Giavarini, F., Frega, N. G., & Gianfranceschi, G. L. (2013). Characterization of phospholipid molecular species and peptide molecules in wheat sprout hydroalcoholic extract. Journal of Agricultural and Food Chemistry, 61(47), 11453-11459.
Ma, X., Zhao, J., & Lieber, C. S. (1996). Polyenylphosphatidylcholine attenuates non-alcoholic hepatic fibrosis and accelerates its regression. Journal of Hepatology, 24(5), 604-613.
Macrae, A. R. (1983). Lipase-catalyzed interesterification of oils and fats. Journal of the American Oil Chemists'' Society, 60(2), 291-294.
Maeba, R., Yusufu, Y., Shimasaki, H., & Ueta, N. (2002). Comparison of the oxidizability of various glycerophospholipids in bilayers by the oxygen uptake method. Lipids, 37(9), 893-900.
Mag, T. K. (1983). Canola oil processing in Canada. Journal of the American Oil Chemists'' Society, 60(2), 380-384.
Mak, K. M., Wen, K., Ren, C., & Lieber, C. S. (2003). Dilinoleoylphosphatidylcholine reproduces the antiapoptotic actions of polyenylphosphatidylcholine against ethanol-induced hepatocyte apoptosis. Alcohololism: Clinical and Experimental Research, 27(6), 997-1005.
Mayr, J. A., Kohlwein, S. D., & Paltauf, F. (1996). Identification of a novel, Ca(2+)-dependent phospholipase D with preference for phosphatidylserine and phosphatidylethanolamine in Saccharomyces cerevisiae. FEBS Letters, 393(2-3), 236-240.
Mi, L. J., Mak, K. M., & Lieber, C. S. (2000). Attenuation of alcohol-induced apoptosis of hepatocytes in rat livers by polyenylphosphatidylcholine (PPC). Alcoholism: Clinical and Experimental Research, 24(2), 207-212.
Montealegre, C., Verardo, V., Gomez-Caravaca, A. M., Garcia-Ruiz, C., Marina, M. L., & Caboni, M. F. (2012). Molecular characterization of phospholipids by high-performance liquid chromatography combined with an evaporative light scattering detector, high-performance liquid chromatography combined with mass spectrometry, and gas chromatography combined with a flame ionization detector in different oat varieties. Journal of Agricultural and Food Chemistry, 60(44), 10963-10969.
Muller, A. O., Mrestani-Klaus, C., Schmidt, J., Ulbrich-Hofmann, R., & Dippe, M. (2012). New cardiolipin analogs synthesized by phospholipase D-catalyzed transphosphatidylation. Chemistry and Physics of Lipids, 165(7), 787-793.
Mustranta, A., Suortti, T., & Poutanen, K. (1994). Transesterification of phospholipids in different reaction conditions. Journal of the American Oil Chemists Society, 71(12), 1415-1419.
Nagata, T., Yaguchi, T., & Nishizaki, T. (2011). DL- and PO-phosphatidylcholines as a promising learning and memory enhancer. Lipids in Health and Disease, 10:25.
Navder, K. P., Baraona, E., & Lieber, C. S. (1997). Polyenylphosphatidylcholine attenuates alcohol-induced fatty liver and hyperlipemia in rats. Journal of Nutrition, 127(9), 1800-1806.
Navder, K. P., Baraona, E., & Lieber, C. S. (2000). Dilinoleoylphosphatidylcholine protects human low density lipoproteins against oxidation. Atherosclerosis, 152(1), 89-95.
Navder, K. P., & Lieber, C. S. (2002). Dilinoleoylphosphatidylcholine is responsible for the beneficial effects of polyenylphosphatidylcholine on ethanol-induced mitochondrial injury in rats. Biochemical and Biophysical Research communications, 291(4), 1109-1112.
Niederau, C., Strohmeyer, G., Heintges, T., Peter, K., & Gopfert, E. (1998). Polyunsaturated phosphatidyl-choline and interferon alpha for treatment of chronic hepatitis B and C: a multi-center, randomized, double-blind, placebo-controlled trial. Leich Study Group. Hepatogastroenterology, 45(21), 797-804.
Nieuwenhuyzen, W. v. (2014). The changing world of lecithins. Inform, vol. 25 (pp. 254-259): AOCS.
Nishimoto, T., Kanno, T., Gotoh, A., & Nishizaki, T. (2013). DL–/PO–phosphatidylcholine serves as a memory enhancer for normal healthy subjects. Personalized Medicine Universe, 2, 16-19.
Oette, K., Kuhn, G., Romer, A., Niemann, R., Gundermann, K. J., & Schumacher, R. (1995). Absorption of di-linoleoylphosphatidylcholine after oral administration. Arzneimittelforschung, 45(8), 875-879.
Okiyama, W., Tanaka, N., Nakajima, T., Tanaka, E., Kiyosawa, K., Gonzalez, F. J., & Aoyama, T. (2009). Polyenephosphatidylcholine prevents alcoholic liver disease in PPARα-null mice through attenuation of increases in oxidative stress. Journal of Hepatology, 50(6), 1236-1246.
Olthof, M. R., Brink, E. J., Katan, M. B., & Verhoef, P. (2005). Choline supplemented as phosphatidylcholine decreases fasting and postmethionine-loading plasma homocysteine concentrations in healthy men. American Journal of Clinical Nutrition, 82(1), 111-117.
Pandey, N. R., Sultan, K., Twomey, E., & Sparks, D. L. (2009). Phospholipids block nuclear factor-kappa B and tau phosphorylation and inhibit amyloid-beta secretion in human neuroblastoma cells. Neuroscience, 164(4), 1744-1753.
Patil, V. V., Galge, R. V., & Thorat, B. N. (2010). Extraction and purification of phosphatidylcholine from soyabean lecithin. Separation and Purification Technology, 75(2), 138-144.
Penci, M. C., Constenla, D. T., & Carelli, A. A. (2010). Free-fatty acid profile obtained by enzymatic solvent-free hydrolysis of sunflower and soybean lecithins. Food Chemistry, 120(1), 332-338.
Peng, L. F., Xu, X. B., Mu, H. L., Hoy, C. E., & Adler-Nissen, J. (2002). Production of structured phospholipids by lipase-catalyzed acidolysis: optimization using response surface methodology. Enzyme and Microbial Technology, 31(4), 523-532.
Persson, M., Costes, D., Wehtje, E., & Adlercreutz, P. (2002). Effects of solvent, water activity and temperature on lipase and hydroxynitrile lyase enantioselectivity. Enzyme and Microbial Technology, 30(7), 916-923.
Peterson, B. L., & Cummings, B. S. (2006). A review of chromatographic methods for the assessment of phospholipids in biological samples. Biomedical Chromatography, 20(3), 227-243.
Polichetti, E., Janisson, A., de la Porte, P. L., Portugal, H., Leonardi, J., Luna, A., La Droitte, P., & Chanussot, F. (2000). Dietary polyenylphosphatidylcholine decreases cholesterolemia in hypercholesterolemic rabbits: role of the hepato-biliary axis. Life Sciences, 67(21), 2563-2576.
Poniachik, J., Baraona, E., Zhao, J. B., & Lieber, C. S. (1999). Dilinoleoylphosphatidylcholine decreases hepatic stellate cell activation. Journal of Laboratory and Clinical Medicine, 133(4), 342-348.
Reddy, J. R. C., Vijeeta, T., Karuna, M. S. L., Rao, B. V. S. K., & Prasad, R. B. N. (2005). Lipase-catalyzed preparation of palmitic and stearic acid-rich phosphatidylcholine. Journal of the American Oil Chemists Society, 82(10), 727-730.
Sandhu, D., Alt, J. L., Scherder, C. W., Fehr, W. R., & Bhattacharyya, M. K. (2007). Enhanced oleic acid content in the soybean mutant M23 is associated with the deletion in the Fad2-1a gene encoding a fatty acid desaturase. Journal of the American Oil Chemists Society, 84(3), 229-235.
Scarth, R., & Tang, J. (2006). Modification of oil using conventional and transgenic approaches. Crop Science, 46(3), 1225-1236.
Servi, S. (1999). Phospholipases as synthetic catalysts. Biocatalysis - from Discovery to Application, 200, 127-158.
Singh, R. J., & Hymowitz, T. (1999). Soybean genetic resources and crop improvement. Genome, 42(4), 605-616.
Sjovall, O., Kuksis, A., Marai, L., & Myher, J. J. (1997). Elution factors of synthetic oxotriacylglycerols as an aid in identification of peroxidized natural triacylglycerols by reverse-phase high-performance liquid chromatography with electrospray mass spectrometry. Lipids, 32(11), 1211-1218.
Skipski, V. P., Peterson, R. F., & Barclay, M. (1964). Quantitative analysis of phospholipids by thin-layer chromatography. Biochem Journal, 90(2), 374-378.
Son, Y., Lee, J. H., Kim, N. H., Surh, N. Y., Kim, E. C., Chung, H. T., Kang, D. G., & Pae, H. O. (2010). Dilinoleoylphosphatidylcholine induces the expression of the anti-inflammatory heme oxygenase-1 in RAW264.7 macrophages. Biofactors, 36(3), 210-215.
Szuhaj, B. F. (1989). Lecithins: sources, manufacture & uses. The American Oil Chemists Society.
Taylor, L., Pletschen, L., Arends, J., Unger, C., & Massing, U. (2010). Marine phospholipids - a promising new dietary approach to tumour-associated weight loss. Onkologie, 33, 199-199.
Teberikler, L., Koseoglu, S., & Akgerman, A. (2001). Selective extraction of phosphatidylcholine from lecithin by supercritical carbon dioxide/ethanol mixture. Journal of the American Oil Chemists Society, 78(2), 115-119.
Teti Estiasih, K. A., Erliana G., & Arya U. (2013). Optimization of high EPA structured phospholipids synthesis from ω-3 fatty acid enriched oil and soy lecithin. Journal of Food Science and Engineering, 3, 25-32.
Tsyrkunov, V. M. (1992). Lipostabil in the treatment of viral hepatitis B in subjects who abuse alcohol. Klin Med (Mosk), 70(1), 75-78.
Ulbrich-Hofmann, R. (2003). Enzyme-catalysed transphosphatidylation. European Journal of Lipid Science and Technology, 105(6), 305-308.
Ulbrich-Hofmann, R., Lerchner, A., Oblozinsky, M., & Bezakova, L. (2005). Phospholipase D and its application in biocatalysis. Biotechnology Letters, 27(8), 535-544.
van Nieuwenhuyzen, W., & Tomás, M. C. (2008). Update on vegetable lecithin and phospholipid technologies. European Journal of Lipid Science and Technology, 110(5), 472-486.
Vance, D. E., & Vance, J. (2002). Phospholipid biosynthesis in eukaryotes. Biochemistry of lipids, lipoproteins and membranes. Vance, DE & Vance, JE, eds., Elsevier Science BV, 205-232.
Vance, J. E., & Vance, D. E. (2004). Phospholipid biosynthesis in mammalian cells. Biochemistry and Cell Biology, 82(1), 113-128.
Vikbjerg, A. F., Mu, H. L., & Xu, X. B. (2005). Lipase-catalyzed acyl exchange of soybean phosphatidylcholine in n-hexane: A critical evaluation of both acyl incorporation and product recovery. Biotechnology Progress, 21(2), 397-404.
Vikbjerg, A. F., Rusig, J. Y., Jonsson, G., Mu, H., & Xu, X. (2006). Comparative evaluation of the emulsifying properties of phosphatidylcholine after enzymatic acyl modification. Journal of Agricultural and Food Chemistry, 54(9), 3310-3316.
Waite, M. (1999). The phospholipase D superfamily: insights into catalysis. Biochimica et Biophysica Acta, 1439(2), 187-197.
Walczak, J., Bocian, S., & Buszewski, B. (2014). Two-dimensional high performance liquid chromatography-mass spectrometry for phosphatidylcholine analysis in egg yolk. Food Analytical Methods, 1-7.
Weete, J. D., & Griffith, G. L. (1995). Process for obtaining highly purified phosphatidylcholine. Google Patents.
Wen, K. F., Mak, K. M., Ren, C. L., & Lieber, C. S. (2001). Protection against alcohol-induced hepatocyte apoptosis by polyenylphosphatidylcholine (PPC) is mediated by its main component dilinoleoylphosphatidylcholine (DLPC). Gastroenterology, 120(5), A363-A363.
Wijendran, V., Huang, M. C., Diau, G. Y., Boehm, G., Nathanielsz, P. W., & Brenna, J. T. (2002). Efficacy of dietary arachidonic acid provided as triglyceride or phospholipid as substrates for brain arachidonic acid accretion in baboon neonates. Pediatric Research, 51(3), 265-272.
Willmann, J., Thiele, H., & Leibfritz, D. (2011). Combined reversed phase HPLC, mass spectrometry, and NMR spectroscopy for a fast separation and efficient identification of phosphatidylcholines. Journal of Biomedicine and Biotechnology.
Xu, Y., Leo, M. A., & Lieber, C. S. (2005). DLPC attenuates alcohol-induced cytotoxicity in HepG2 cells expressing CYP2E1. Alcohol Alcoholism, 40(3), 172-175.
Yaguchi, T., Nagata, T., & Nishizaki, T. (2009). Dilinoleoylphosphatidylcholine ameliorates scopolamine-induced impairment of spatial learning and memory by targeting alpha7 nicotinic ACh receptors. Life Sciences, 84(9-10), 263-266.
Yang, H., & Roberts, M. F. (2003). Phosphohydrolase and transphosphatidylation reactions of two Streptomyces phospholipase D enzymes: covalent versus noncovalent catalysis. Protein Science, 12(9), 2087-2098.
Yang, S. F., Freer, S., & Benson, A. A. (1967). Transphosphatidylation by phospholipase D. Journal of Biological Chemistry, 242(3), 477-&.
Zeng, M. D., Fan, J. G., Lu, L. G., Li, Y. M., Chen, C. W., Wang, B. Y., & Mao, Y. M. (2008). Guidelines for the diagnosis and treatment of nonalcoholic fatty liver diseases. Journal of Digestive Diseases, 9(2), 108-112.
Zhang, W., He, H., Feng, Y., & Da, S. (2003). Separation and purification of phosphatidylcholine and phosphatidylethanolamine from soybean degummed oil residues by using solvent extraction and column chromatography. Journal of Chromatography B, 798(2), 323-331.
Zhao, H. Z., Lu, Z. X., Bie, X. M., Lu, F. X., & Liu, Z. M. (2007). Lipase catalyzed acidolysis of lard with capric acid in organic solvent. Journal of Food Engineering, 78(1), 41-46.
Zhao, T., No, D. S., Kim, B. H., Garcia, H. S., Kim, Y., & Kim, I. H. (2014). Immobilized phospholipase A1-catalyzed modification of phosphatidylcholine with n-3 polyunsaturated fatty acid. Food Chemistry, 157, 132-140.
Zhou, L., Zhao, M. J., Ennahar, S., Bindler, F., & Marchioni, E. (2012). Determination of phosphatidylethanolamine molecular species in various food matrices by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS2). Analytical and Bioanalytical Chemistry, 403(1), 291-300.
Zierenberg, O., & Grundy, S. M. (1982a). Intestinal-absorption of polyenephosphatidylcholine in man. Journal of Lipid Research, 23(8), 1136-1142.
Zierenberg, O., & Grundy, S. M. (1982b). Intestinal absorption of polyenephosphatidylcholine in man. Journal of Lipid Research, 23(8), 1136-1142.
Zuidam, N. J., Gouw, H. K. M. E., Barenholz, Y., & Crommelin, D. J. A. (1995). Physical (in)stability of liposomes upon chemical hydrolysis - the role of lysophospholipids and fatty-acids. Biochimica et Biophysica Acta-Biomembranes, 1240(1), 101-110.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top