跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 03:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱聖翔
研究生(外文):Sheng-Hsiang Chiu
論文名稱:底泥中多環芳香烴對青鱂魚胚胎生物有效性及毒性效應之探討
論文名稱(外文):Assessing Bioavailability and Toxicity of Sediment Polycyclic Aromatic Hydrocarbon (PAH) Using Embryos of Medaka Fish (Oryzias latipes)
指導教授:陳佩貞
口試委員:賴弘智謝季吟周佩欣
口試日期:2015-07-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:98
中文關鍵詞:持久性有機污染物多環芳香烴青鱂魚苯駢厄全底泥暴露腐植酸急毒發育毒性
外文關鍵詞:persistent organic pollutants (POPs)polycyclic aromatic hydrocarbons (PAHs)medaka (Oryzias latipes)Fluoranthene (Fl)whole sediment exposurehumic acid (HA)actue toxicitydevelopmental toxicity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多環芳香烴(polycyclic aromatic hydrocarbons, PAHs)為持久性有機污染物(persistent organic pollutants, POPs)之一,也是常見之關切底泥污染物,這些污染物易與水體懸浮顆粒或有機質吸附而沉積在底泥中,而成了PAHs的蓄積庫。如水體及生物擾動常使吸附於底泥的PAHs重新釋放到表層水中,提高水生生物的暴露風險,也使得底泥污染對水生生物造成衝擊。然而目前底泥生物毒性檢測標準方法於台灣還屬開發階段。因此本研究(1)以青鱂魚(Oryzias latipes)胚胎做為模式生物,並以外添加PAH苯駢厄(Fluoranthene, Fl)(50-350 mg/kg dw)於人造底泥中進行全底泥暴露(whole sediment exposure),以評估底泥中Fl對胚胎毒性反應; (2)比較全底泥暴露法及以離心方式所取得之底泥孔隙水暴露法,探討底泥中Fl於胚胎的生物有效性及毒性效應; 以及(3)探討底泥中腐植酸(humic acid, HA)含量(0、0.1、1 g/kg dw)對底泥Fl(100 mg/kg dw)於胚胎生物有效性和毒性之影響。結果顯示,在全底泥Fl 50-350 mg/kg dw暴露下,胚胎受精後第20天(day post fertilization, dpf)的死亡率為35-67%,呈顯著劑量反應關係。此外胚胎發育毒性如心搏數與孵化後魚苗之體幹畸形率,皆隨底泥中Fl劑量上升而增加。相較於全底泥暴露,以離心方式所取得的水相暴露結果,以Fl暴露的胚胎經20天後仍無法順利孵化。且以水相暴露無法觀察到如全底泥暴露中,Fl對魚苗造成體幹畸形等毒性效應。因此以此離心條件方式所萃取的水相進行暴露,似乎無法有效的反應底泥中PAHs對胚胎的生物有效性。此外,底泥中Fl對胚胎死亡毒性效應,隨底泥中HA含量的增加而上升,可能原因為HA增加了Fl於水相中的溶解度,使得Fl對胚胎的生物有效性上升,而導致死亡率的上升。因此在底泥POPs胚胎毒性試驗中以全底泥暴露方式進行較佳,並需考慮HA對POPs毒性影響。本研究利用青鱂魚胚胎作為模式生物,藉由添加PAH(Fluoranthene, Fl)於人造底泥中,藉此建立出脊椎生物青鱂魚胚胎底泥毒性檢測方法,並發現底泥中腐質酸將顯著的影響了底泥中Fl傳輸及其對胚胎生物有效性的影響。

Polycyclic aromatic hydrocarbons (PAHs) are hydrophobic persistent organic pollutants (POPs) with emerging concerns in sediment contamination. PAHs easily bind to the organic matter and/or particle matter in water and finally deposit in sediment as a pollutant source. Disturbance by aquatic organisms or water flow may release the PAHs to water column from sediment and the risk of aquatic organisms being exposed to PAHs is therefore enhanced. Indeed there are several standard sediment toxicity tests available for invertebrates, but very limited for vertebrates such as fish. Fish embryo toxicity (FET) assay is particularly suitable for chemical test because the embryonic stage is the most sensitive period to toxicants. The objectives of this research include (1) establishing a whole sediment exposure system with medaka (Oryzias latipes) embryos to evaluate toxicity of sediment PAHs (e.g. fluoranthene, Fl); (2) comparing two sediment exposure methods (whole sediment exposure vs. water phase exposure extracted from centrifuged sediment) on the effect of bioavailability and toxicity of Fl in medaka embryos; and (3) assessing the effect of sediment humic acid (HA) on bioavailability of Fl to medaka embryos with the whole sediment exposure. The results showed that Fl in sediment caused dose-dependent mortality and sublethal effects (e.g. malformation of hatchlings) in medaka embryos with whole sediment exposure, indicating medaka embryos could be a suitable vertebrate model used for sediment toxicity test. As compared with the whole sediment exposure, using water phase exposure from sediment centrifugation may not well express bioavailability of sediment pollution to medaka embryos because it caused lower embryonic mortality and no developmental abnormality was observed. The research also showed that sediment humic acid would enhance the bioavailability of Fl in sediment to medaka embryos, possibly due to enhanced the solubility of Fl in pore water by HA.


口試委員會審定書……………………………………………………………………....i
誌謝……………………………………………………………………………………...ii
中文摘要………………………………………………………………………………..iii
Abstract………………………………………………………………………………...v
縮寫對照表………………………………………………………………………….....vii
目錄……………………………………………………………………………….........ix
圖目錄………………………………………………………………………………….xiii
表目錄…………………………………………………………………………………..xv
1. 前言………………………………………………………………………………..1
1.1 研究源起…………………………………………………………………….........1
1.2 研究動機…………………………………………………………………….........2
2. 文獻回顧…………………………………………………………………………..3
2.1 底泥與有機污染物之關係…………………………………………………..........3
2.2 底泥毒性試驗回顧………………………………………………………….........5
2.2.1 底泥毒性試驗之重要性……………………………………………............5
2.2.2 底泥生物毒性試驗評估方法回顧………………………………….............6
2.2.3 底泥生物毒性試驗暴露方法整理………………………………….............8
2.2.4 底泥生物毒性試驗之模式生物簡介……………………………..............12
2.3 利用魚類作為底泥生物毒性試驗簡介…………………………………............15
2.3.1 魚類物種及暴露方式…………………………………………….............15
2.3.2 利用魚類胚胎作為底泥生物毒性試驗模式生物………………...............17
2.4 多環芳香烴(polycyclic aromatic hydrocarbons)……………………......19
2.4.1 PAHs簡介…………………………………………………………...........19
2.4.2 苯駢厄(Fluoranthene, Fl)物化特性……………………………….....22
2.4.3 PAHs於環境底泥中濃度…………………………………………............23
2.4.4 PAHs對水生魚類毒性效應………………………………………............25
2.4.5 PAHs對魚體胚胎毒性效應………………………………………............27
2.5 底泥中可溶性有機質(dissolved organic matter, DOM)………………....28
2.5.1 底泥中DOM對有機污染物之影響……………………………................28
2.5.2 底泥中腐植酸對有機污染物之生物有效性影響……………….…...........29
2.6 模式生物-青鱂魚(Oryzias latipes)胚胎………………………...………....30
2.7 研究目的…………………………………………………………………….......31
3. 材料與方法………………………………………………………………..........32
3.1 研究架構說明……………………………………………………………….......32
3.2 實驗器材…………………………………………………………………..........33
3.2.1 實驗藥品及試劑………………………………………………….............34
3.2.2 儀器設備………………………………………………………….............35
3.3 青鱂魚馴養及試驗胚胎挑選…………………………………………...…........36
3.4 Fl稀釋水溶液暴露胚胎毒性試驗……………………………………...............38
3.5 全底泥暴露胚胎系統建立及干擾因子測試……………………………….........42
3.5.1 系統干擾因子說明…………………………………………………..........42
3.5.2 人造底泥配置及平衡………………………………………………..........43
3.5.3 暴露試驗設計………………………………………………………..........45
3.6 Fl污染底泥之全底泥暴露胚胎毒性實驗……………………………….............47
3.6.1 Fl添加於人造底泥方法…………………………………………..............47
3.6.2 全底泥暴露胚胎毒性試驗………………………………………..............47
3.7 底泥中Fl濃度確認………………………………………………………...........49
3.8 Fl污染底泥之離心水暴露胚胎毒性實驗……………………………….............51
3.8.1 底泥離心水萃取方法…………………………………………….............51
3.8.2 離心水暴露胚胎毒性試驗………………………………………..............51
3.9 底泥中可溶性有機質對Fl於胚胎生物有效性影響…………………….............52
3.9.1 底泥中可溶性有機質(humic acid, HA)製備…………………...........52
3.9.2 底泥中HA對底泥中Fl毒性影響試驗………………………….................52
3.10 統計方法…………………………………………………………………..........53
4. 結果與討論……………………………………………………………………....54
4.1 Fl水溶液暴露胚胎毒性結果……………………………………………............54
4.2 全底泥暴露系統之干擾因子測試結果…………………………………............58
4.3 底泥中Fl濃度分析結果………………………………………………...............63
4.4 兩種暴露方法對底泥中Fl於胚胎毒性結果…………………………................67
4.4.1 全底泥暴露急毒性(死亡率)結果……………………………..............67
4.4.2 全底泥暴露胚胎之非致死效應結果……………………………..............70
4.4.3 離心水暴露毒性結果…………………………………………….............75
4.4.4 兩種暴露方式比較及討論………………………………………..............80
4.5 底泥中HA對Fl之生物有效性及毒性效應之結果及討論…………...................82
5. 結論與建議………………………………………………………………….......86
6. 參考文獻………………………………………………………………………....87


Agency for Toxic Substances and Disease Registry, (1996). ToxFAQ for Polycyclic Aromatic Hydrocarbons (PAHs). Atlanta, GA.
Andersson, T. and Parot, P. (1989). Benzo[a]pyrene metabolism in isolated perfused rainbow trout gills. Marine Environmental Research, 28(1-4), pp.3-7.
Ankley, G., Cook, P., Carlson, A., Call, D., Swenson, J., Corcoran, H. and Hoke, R. (1992). Bioaccumulation of PCBs from sediments by oligochaetes and fishes: comparison of laboratory and field Studies. Canadian Journal of Fisheries and Aquatic Sciences, 49(10), pp.2080-2085.
Ankley, G., Lodge, K., Call, D., Balcer, M., Brooke, L., Cook, P., Kreis, R., Carlson, A., Johnson, R., Niemi, G., Hoke, R., West, C., Giesy, J., Jones, P. and Fuying, Z. (1992). Integrated assessment of contaminated sediments in the lower Fox River and Green Bay, Wisconsin. Ecotoxicology and Environmental Safety, 23(1), pp.46-63.
ASTM, (2008). Standard Guide for Designing Biological Tests with Sediments. West Conshohocken: E1525 .ASTM International.
Barron, M. (2004). Evaluation of fish early life-stage toxicity models of chronic embryonic exposures to complex polycyclic aromatic hydrocarbon mixtures. Toxicological Sciences, 78(1), pp.60-67.
Barron, M., Carls, M., Short, J. and Rice, S. (2003). Photoenhanced toxicity of aqueous phase and chemically disperse wethered Alaska north sople crude oil to pacific herring eggs and larvae. Environmental Toxicology Chemistry, 22(3), p.650.
Billiard, S., Querbach, K. and Hodson, P. (1999). Toxicity of retene to early life stages of two freshwater fish species. Environmental Toxicologlogy Chemistry, 18(9), pp.2070-2077.
Booij, K., Hoedemaker, J. and Bakker, J. (2003). Dissolved PCBs, PAHs, and HCB in pore waters and overlying waters of contaminated harbor sediments. Environmental Science & Technology, 37(18), pp.4213-4220.
Brinkworth, L., Hodson, P., Tabash, S. and Lee, P. (2003). CYP1A induction and blue SAC disease in early developmental stages of rainbow trout (Oncorhynchus mykiss) exposed to retene. Journal of Toxicology and Environmental Health Part A, 66(7), pp.526-646.
Burton, G. (2013). Assessing sediment toxicity: Past, present, and future. Environmental Toxicologlogy Chemistry, 32(7), pp.1438-1440.
Cachot, J., Law, M., Pottier, D., Peluhet, L., Norris, M., Budzinski, H. and Winn, R. (2007). Characterization of toxic effects of sediment-associated organic pollutants using theλtransgenic medaka. Environmental Science & Technology, 41(22), pp.7830-7836.
Carls, M., Rice, S. and Hose, J. (1999). Sensitivity of fish embryos to weathered crude oil: Part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval pacific herring ( Clupea pallasi ). Environmental Toxicologlogy Chemistry, 18(3), pp.481-493.
Chapman, P. and Wang, F. (2001). Assesing sediment contamination in estuaries Environmental Toxicologlogy Chemistry, 20(1), p.3.
Chapman, P., Wang, F., Germano, J. and Batley, G. (2002). Pore water testing and analysis: the good, the bad, and the ugly. Marine Pollution Bulletin, 44(5), pp.359-366.
Chen, J., Gao, H., Zhang, Y., Zhang, Y., Zhou, X., Li, C. and Gao, H. (2014). Developmental toxicity of diclofenac and elucidation of gene regulation in zebrafish (Danio rerio). Scientific Reports, 4.
Chen, S., Ke, R., Zha, J., Wang, Z. and Khan, S. (2008). Influence of humic acid on bioavailability and toxicity of benzo[k]fluoranthene to Japanese medaka. Environmental Science & Technology, 42(24), pp.9431-9436.
Chin, Y., Aiken, G. and Danielsen, K. (1997). Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity. Environmental Science & Technology, 31(6), pp.1630-1635.
Chiou, C., Kile, D., Brinton, T., Malcolm, R., Leenheer, J. and MacCarthy, P. (1987). A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids. Environmental Science & Technology, 21(12), pp.1231-1234.
Chiou, C., Malcolm, R., Brinton, T. and Kile, D. (1986). Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environmental Science & Technology, 20(5), pp.502-508.
Conte, P., Agretto, A., Spaccini, R. and Piccolo, A. (2005). Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environmental Pollution, 135(3), pp.515-522.
Dawe, C., Stanton, M. and Schwartz, F. (1964). Hepatic neoplasms in native bottom feeding fish of Deep Creek Lake. Cancer Research, (24), pp.1194a€“1201.
Darea, J. (2008). Persistent, bioaccumulative and toxic substances in fish: Human health considerations. Science of The Total Environment, 400(1-3), pp.93-114.
Ehlers, L. and Luthy, R. (2003). Peer reviewed: Contaminant bioavailability in soil and sediment. Environmental Science & Technology, 37(15), pp.295A-302A.
Engebretson, R. and von Wandruszka, R. (1994). Micro-organization in dissolved humic acids. Environmental Science & Technology, 28(11), pp.1934-1941.
Eriksson Wiklund, A. and Dag Broman, B. (2005). Toxicity evaluation by using intact sediments and sediment extracts. Marine Pollution Bulletin, 50(6), pp.660-667.
Fang, M., Lee, C. and Yu, C. (2003). Distribution and source recognition of polycyclic aromatic hydrocarbons in the sediments of Hsin-ta Harbour and adjacent coastal areas, Taiwan. Marine Pollution Bulletin, 46(8), pp.941-953.
Geffard, O., Geffard, A., His, E. and Budzinski, H. (2003). Assessment of the bioavailability and toxicity of sediment-associated polycyclic aromatic hydrocarbons and heavy metals applied to Crassostrea gigas embryos and larvae. Marine Pollution Bulletin, 46(4), pp.481-490.
Giesy, J. and Hoke, R. (1989). Freshwater sediment toxicity bioassessment: rationale for species selection and test design. Journal of Great Lakes Research, 15(4), pp.539-569.
Haitzer, M., Hass, S., Traunspurger, W. and Steinberg, C. (1998). Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms ” a review ”. Chemosphere, 37(7), pp.1335-1362.
Hallare, A., Seiler, T. and Hollert, H. (2010). The versatile, changing, and advancing roles of fish in sediment toxicity assessment ”a review”. Journal of Soils and Sediments, 11(1), pp.141-173.
Hargis, W., Roberts, M. and Zwerner, D. (1984). Effects of contaminated sediments and sediment-exposed effluent water on an estuarine fish: Acute toxicity. Marine Environmental Research, 14(1-4), pp.337-354.
Harkey, G., Landrum, P. and Klaine, S. (1994). Compariosn of whole-sediment, elutriate and pore-water exposure for use in assessing sediment-associated organic contaminants in bioassays. Environmental Toxicologlogy Chemistry, 13(8), p.1315.
Hicken, C., Linbo, T., Baldwin, D., Willis, M., Myers, M., Holland, L., Larsen, M., Stekoll, M., Rice, S., Collier, T., Scholz, N. and Incardona, J. (2011). Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish. Proceedings of the National Academy of Sciences, 108(17), pp.7086-7090.
Hinkle-Conn, C., Fleeger, J., Gregg, J. and Carman, K. (1998). Effects of sediment-bound polycyclic aromatic hydrocarbons on feeding behavior in juvenile spot (Leiostomus xanthurus). Journal of Experimental Marine Biology and Ecology, 227(1), pp.113-132.
Hollert, H., Keiter, S., Kanig, N., Rudolf, M., Ulrich, M. and Braunbeck, T. (2004). A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos. Journal of Soils & Sediments, 4(2), pp.94-94.
Hass, S., Ahlf, W., Fahnenstich, C., Gilberg, D., Hollert, H., Melbye, K., Meller, M., Hammers-Wirtz, M., Heininger, P., Neumann-Hensel, H., Ottermanns, R., Ratte, H., Seiler, T., Spira, D., Weber, J. and Feiler, U. (2010). Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination a€“ Determination of toxicity thresholds. Environmental Pollution, 158(9), pp.2999-3010.
Hou, D., He, J., La, C., Wang, W. and Zhang, F. (2014). Spatial distributions of humic substances and evaluation of sediment organic index on lake Dalinouer, China. Journal of Geochemistry, 2014, pp.1-13.
Huang, W., Peng, P., Yu, Z. and Fu, J. (2003). Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Applied Geochemistry, 18(7), pp.955-972.
Hylland, K. (2006). Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems. Journal of Toxicology and Environmental Health, Part A, 69(1-2), pp.109-123.
Incardona, J., Collier, T. and Scholz, N. (2004). Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicology and Applied Pharmacology, 196(2), pp.191-205.
Incardona, J., Linbo, T. and Scholz, N. (2011). Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development. Toxicology and Applied Pharmacology, 257(2), pp.242-249.
Ingersoll, C., Brunson, E., Dwyer, F., Hardesty, D. and Kemble, N. (1998). Use of sublethal endpoints in sediment toxicity tests with the amphipod Hyalella azteca. Environmental Toxicologlogy Chemistry, 17(8), p.1508.
Ishikawa, Y. (2000). Medakafish as a model system for vertebrate developmental genetics. Bioessays, 22(5), pp.487-495.
Iwamatsu, T. (2004). Stages of normal development in the medaka Oryzias latipes. Mechanisms of Development, 121(7-8), pp.605-618.
Ke, L., Bao, W., Chen, L., Wong, Y. and Tam, N. (2009). Effects of humic acid on solubility and biodegradation of polycyclic aromatic hydrocarbons in liquid media and mangrove sediment slurries. Chemosphere, 76(8), pp.1102-1108.
Kemble, N., Dwyer, F., Ingersoll, C., Dawson, T. and Norberg-King, T. (1999). Tolerance of freshwater test organisms to formulated sediment for use as control materials in whole-sediment toxicity tests. Environmental Toxicologlogy Chemistry, 18(2), p.222.
Kaester, E. and Altenburger, R. (2008). Oxygen decline in biotesting of environmental samples-Is there a need for consideration in the acute zebrafish embryo assay?. Environmental toxicology., 23(6), pp.745-750.
Arillo, A., Falugi, C. and Melodia, F. (1998). Histochemical and biochemical markers in trout larvae exposed to river sediments. Chemosphere, 37(14-15), pp.2797-2807.
Le Bihanic, F., Perrichon, P., Landi, L., Clrandeau, C., Le Menach, K., Budzinski, H., Cousin, X. and Cachot, J. (2014). Development of a reference artificial sediment for chemical testing adapted to the MELA sediment contact assay. Environmental Science & Pollutant Research, 21(24), pp.13689-13702.
Linnik, P. and Zubenko, I. (2000). Role of bottom sediments in the secondary pollution of aquatic environments by heavy-metal compounds. Lakes and Reservoirs: Research and Management, 5(1), pp.11-21.
Long, E. (2006). Calculation and uses of mean sediment quality guideline quotients: A critical review. Environmental Science & Technology, 40(6), pp.1726-1736.
Lotufo, G. (1998). Lethal and sublethal toxicity of sediment-associated fluoranthene to benthic copepods: application of the critical-body-residue approach. Aquatic Toxicology, 44(1-2), pp.17-30.
Lu, G., Mak, Y., Wai, S., Kwong, W., Fang, M., James, A., Randall, D. and Yew, D. (2005). Hypoxia-induced differential apoptosis in the central nervous system of the sturgeon (Acipenser shrenckii). Microscopy Research and Technique, 68(5), pp.258-263.
Marty, G., Hinton, D., Short, J., Heintz, R., Rice, S., Dambach, D., Willits, N. and Stegeman, J. (1997). Ascites, premature emergence, increased gonadal cell apoptosis, and cytochrome P4501A induction in pink salmon larvae continuously exposed to oil-contaminated gravel during development. Canadian Journal of Zoology, 75(6), pp.989-1007.
Mastral, A. and Callan, M. (2000). A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environmental Science & Technology, 34(15), pp.3051-3057.
Mayer, P., Fernqvist, M., Christensen, P., Karlson, U. and Trapp, S. (2007). Enhanced diffusion of polycyclic aromatic hydrocarbons in artificial and natural aqueous solutions. Environmental Science & Technology, 41(17), pp.6148-6155.
McCain, B., Hodgins, H., Gronlund, W., Hawkes, J., Brown, D., Myers, M. and Vandermeulen, J. (1978). Bioavailability of crude oil from experimentally oiled sediments to english sole (Parophrys vetulus ), and pathological consequences. Journal of the Fisheries Research Board of Canada, 35(5), pp.657-664.
McCarthy, J. and Jimenez, B. (1985). Reduction in bioavailability to bluegills of polycyclic aromatic hydrocarbons bound to dissolved humic material. Environmental Toxicologlogy Chemistry, 4(4), pp.511-521.
McCarthy, J. and Jimenez, B. (1985). Reduction in bioavailability to bluegills of polycyclic aromatic hydrocarbons bound to dissolved humic material. Environmental Toxicologlogy Chemistry, 4(4), pp.511-521.
McDonough, K., Azzolina, N., Hawthorne, S., Nakles, D. and Neuhauser, E. (2010). An evaluation of the ability of chemical measurements to predict polycyclic aromatic hydrocarbon-contaminated sediment toxicity to Hyalella azteca. Environmental Toxicology and Chemistry, 29(7), pp.1545-1550.
McElroy, A., Bogler, A., Weisbaum, D., Norris, M., Mendelman, L., Setlow, R. and Winn, R. (2006). Uptake, metabolism, mutant frequencies and mutational spectra in λ transgenic medaka embryos exposed to benzo[i]pyrene dosed sediments. Marine Environmental Research, 62, pp.S273-S277.
Mostofa, K. (2013). Photobiogeochemistry of organic matter. Berlin: Springer.
OECD, (1992). Test No. 203: Fish, Acute Toxicity Test. Paris.
OECD, (1992). Test No. 210: Fish, Early-Life Stage Toxicity Test. Paris.
OECD, (1998). Test No. 212: Fish, Short-term Toxicity Test on Embryo and Sac-Fry Stages. Paris.
Pawliszyn, J. (1999). Applications of solid phase microextraction. Cambridge: Royal Society of Chemistry.
Payne, J. and Fancey, L. (1989). Effect of polycyclic aromatic hydrocarbons on immune responses in fish: Change in melanomacrophage centers in flounder (Pseudopleuronectes americanus) exposed to hydrocarbon-contaminated sediments. Marine Environmental Research, 28(1-4), pp.431-435.
Perrichon, P., Le Bihanic, F., Bustamante, P., Le Menach, K., Budzinski, H., Cachot, J. and Cousin, X. (2014). Influence of sediment composition on PAH toxicity using zebrafish (Danio rerio) and Japanese medaka (Oryzias latipes) embryo-larval assays. Environ Sci Pollut Res, 21(24), pp.13703-13719.
Russell, W. and Burch, R. (1959). The principles of humane experimental technique. London: Methuen.
Sasson-Brickson, G. and Burton, G. (1991). In situ and laboratory sediment toxicity testing with Ceriodaphnia dubia. Environmental Toxicologlogy Chemistry, 10(2), pp.201-207.
Schwarzenbach, R., Gschwend, P. and Imboden, D. (2003). Environmental organic chemistry. Hoboken, N.J.: John Wiley & Sons.
Shang, E. and Wu, R. (2004). Aquatic hypoxia is a teratogen and affects fish embryonic development. Environmental Science & Technology, 38(18), pp.4763-4767.
Shen, H., Huang, Y., Wang, R., Zhu, D., Li, W., Shen, G., Wang, B., Zhang, Y., Chen, Y., Lu, Y., Chen, H., Li, T., Sun, K., Li, B., Liu, W., Liu, J. and Tao, S. (2013). Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environmental Science & Technology, p.130531142550008.
Smith, K., Thullner, M., Wick, L. and Harms, H. (2009). Sorption to humic acids enhances polycyclic aromatic hydrocarbon biodegradation. Environmental Science & Technology, 43(19), pp.7205-7211.
Sonstegard, R. (1977). Environmental carcinogenesis studied in fishes of the great lakes of north America. Annals of the New York Academy of Sciences, 298(1 Aquatic Pollution), pp.261-269.
Spehar, R., Poucher, S., Brooke, L., Hansen, D., Champlin, D. and Cox, D. (1999). Comparative toxicity of fluoranthene to freshwater and saltwater species under fluorescent and ultraviolet light. Archives of Environmental Contamination and Toxicology, 37(4), pp.496-502.
Suedel, B. and Jr., J. (1996). Toxicity of fluoranthene to Daphnia magna, Hyalella azteca, Chironomus tentans, and Stylaria lacustris in water-only and whole sediment exposures. Bulletin of Environmental Contamination and Toxicology, 57(1), pp.132-138.
Suedel, B., Rodgers, J. and Clifford, P. (1993). Bioavailability of fluoranthene in freshwater sediment toxicity tests. Environmental Toxicologlogy Chemistry, 12(1), pp.155-165.
Ter Laak, T., ter Bekke, M. and Hermens, J. (2009). Dissolved organic matter enhances transport of PAHs to aquatic organisms. Environmental Science & Technology, 43(19), pp.7212-7217.
Tian, S., Zhu, L., Bian, J. and Fang, S. (2012). Bioaccumulation and metabolism of polybrominated diphenyl ethers in carp (Cyprinus carpio) in a water/sediment microcosm: Important role of particulate matter exposure. Environmental Science & Technology, 46(5), pp.2951-2958.
Tuvikene, A. (1995). Response of fish to PAHs. Annales Zoologici Fennici, (32), pp.295-309.
U.S. Environmental Protection Agency, (1981). Development of bioassay procedures for defining pollution of harbour sediments. EPA 600/R-94/024. Duluth, MN.
U.S. Environmental Protection Agency, (1993). Sediment quality criteria for the protection of benthic organisms: Fluoranthene. EPA -822-R-93-012. Washington, DC.
U.S. Environmental Protection Agency, (1994). Assessment and remediation of contaminated sediment assessment guidance document. EPA-905-B94-002. Chicago, Illinois.
U.S. Environmental Protection Agency, (2001). Methods for collection, storage and manipulation of sediments for chemical and toxicological analyses: Technical manual. EPA-823-B-01-002. Washington, DC.
U.S. Environmental Protection Agency, (2002). A Guidance manual to support the assessment of contaminated sediments in freshwater ecosystems. EPA-905-B02-001-A. Chicago, Illinois.
Van der Oost, R., Heida, H., Opperhuizen, A. and Vermeulen, N. (1991). Interrelationships between bioaccumulation of organic trace pollutants (PCBs, organochlorine pesticides and PAHs), and MFO-induction in fish. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 100(1-2), pp.43-47.
Vicquelin, L., Leray-Forget, J., Peluhet, L., LeMenach, K., Deflandre, B., Anschutz, P., Etcheber, H., Morin, B., Budzinski, H. and Cachot, J. (2011). A new spiked sediment assay using embryos of the Japanese medaka specifically designed for a reliable toxicity assessment of hydrophobic chemicals. Aquatic Toxicology, 105(3-4), pp.235-245.
Vignet, C., Devier, M., Le Menach, K., Lyphout, L., Potier, J., Cachot, J., Budzinski, H., Baogout, M. and Cousin, X. (2014). Long-term disruption of growth, reproduction, and behavior after embryonic exposure of zebrafish to PAH-spiked sediment. Environmental Science & Pollutant Research, 21(24), pp.13877-13887.
Ward, D., Simpson, S. and Jolley, D. (2013). Slow avoidance response to contaminated sediments elicits sublethal toxicity to Benthic invertebrates. Environmental Science & Technology, 47(11), pp.5947-5953.
Warne, M. and Hawker, D. (1995). The number of components in a mixture determines whether synergistic and antagonistic or additive toxicity predominate: The funnel hypothesis. Ecotoxicology and Environmental Safety, 31(1), pp.23-28.
Weinstein, J. and Oris, J. (1999). Humic acids reduce the bioaccumulation and photoinduced toxicity of fluoranthene to fish. Environmental Toxicologlogy Chemistry, 18(9), pp.2087-2094.
White, P., Robitaille, S. and Rasmussen, J. (1999). Heritable reproductive effects of benzo[a]pyrene on the fathead minnow ( Pimephales promelas ). Environmental Toxicologlogy Chemistry, 18(8), pp.1843-1847.
Whyte, J., Jung, R., Schmitt, C. and Tillitt, D. (2000). Ethoxyresorufin- O -deethylase (EROD) activity in fish as a biomarker of chemical exposure. Critical Reviews in Toxicology, 30(4), pp.347-570.
YI, Y., Wang, Z., Zhang, K., Yu, G. and Duan, X. (2008). Sediment pollution and its effect on fish through food chain in the Yangtze River. International Journal of Sediment Research, 23(4), pp.338-347.
Zapata-Paorez, O., Sima-Alvarez, R., Norea-Barroso, E., Gaemes, J., Gold-Bouchot, G., Ortega, A. and Albores-Medina, A. 200a Oreochromis niloticus. Marine Environmental Research, 50(1-5), pp.385-391.
Zhang, Y., Wang, C., Huang, L., Chen, R., Chen, Y. and Zuo, Z. (2012). Low-level pyrene exposure causes cardiac toxicity in zebrafish (Danio rerio) embryos. Aquatic Toxicology, 114-115, pp.119-124.
台灣行政院環境保護署(TWEPA), (1999). 辦理高難度檢測- 有機物檢測低污染
萃取方法之建立. EPA-88-1402-03-01. 台北.
台灣環境保護署(TWEPA), (2000). 河川環境水體底泥整體調查監測計畫. EPA-
07489150. 台北.
台灣行政院環境保護署(TWEPA), (2011). 生物急毒性檢測方法-羅漢魚靜水式
法. NIEA B902.12B. 台北.
台灣行政院環境保護署(TWEPA), (2013). 底泥生物慢毒性檢測技術之建立與應
用(1/2). EPA-102-1605-02-03. 台北.
吳宛霖. (2012). 不同奈米鐵對青鱂魚早期發育階段之生物累積及毒性效應. 碩士
論文. 台北. ; 國立臺灣大學生物資源暨農學院農業化學系.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top