跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張穎捷
研究生(外文):Ying-Jie Chang
論文名稱:奈米銀微粒於水環境中量測技術開發研究
論文名稱(外文):The development of analytical technology for silver nanoparticles in aquatic environment
指導教授:施養信
指導教授(外文):Yang-Hsin Shih
口試委員:吳先琪秦靜如
口試委員(外文):Shian-Chee WuChing-Ju Chin
口試日期:2015-07-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:114
中文關鍵詞:奈米銀微粒聚集流力層析技術場流分離技術單顆粒感應耦合電漿質譜議動態光散射儀離心
外文關鍵詞:Ag NPaggregationHDCAF4SP-ICP-MSDLScentrifugation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:416
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
工業用奈米微粒 (Engineered nanoparticle)已廣泛地應用於醫療用品、化妝品、紡織塗料及食品包裝添加物等。其中,奈米銀微粒 (silver nanoparticle, Ag NP)具有獨特的抗菌性質,因此成為用量最高的奈米材料之一。Ag NP釋出至環境中,其所造成的潛在風險則受自身在環境中的宿命及轉變主導。因此,近年來發展出許多新興的分析技術,用以偵測水體中的奈米微粒,例如流力層析技術(hydrodynamic chromatography, HDC)、場流分離技術(asymmetric flow field-flow fractionation, AF4)以及單顆粒感應耦合電漿質譜儀(single particle inductively coupled plasma-mass spectrometry, SP-ICP-MS)。然而,這些新興的技術目前多僅侷限於量測純水中的奈米微粒,對於量測環境水體中的奈米微粒,其適用性則尚未明瞭。另外,環境中的奈米微粒常受水體物化性質的不同而有不同的轉變,進而造成偵測上的困難。因此,本研究之目的在於建立水體環境中量測Ag NP大小尺寸與濃度之方法。
AgNP A與B以動態光散射儀(dynamic light scattering, DLS)量測平均粒徑,分別為79.9及122 nm。環境水體則使用三處廢水水樣及三處環境水樣,其所含顆粒之粒徑大小分布不均勻,含有不同的離子強度,pH介於6.9-8.4,導電度在375-11200 µS/cm之間。Ag NP於不同水質之穩定性試驗中,發現pH的調整對Ag NP的聚集行為並無顯著影響。然而,在含有電解質的水體中則會促進Ag NP的聚集現象,且CaCl2之影響較NaCl顯著,因Ca2+較能顯著壓縮Ag NP表面的電雙層(electrical double layer),進而減少Ag NP表面的靜電排斥力;此外,較低的溫度能夠抑制Ag NP的聚集與溶解行為,因為低溫下會降低顆粒與顆粒之間的碰撞頻率。因此建議含有奈米顆粒之環境樣品應置於低溫且不調整pH值的條件下保存。Ag NP量測前處理結果顯示,以離心轉速2000×g離心2分鐘後,可較過濾方式有效去除水體中的干擾,所以有較佳的回收率。探討HDC之分析條件,發現以pH 10之純水作為移動相時,奈米銀微粒之水合半徑(hydrodynamic diameter)與滯留時間有最佳的相關性(R2>0.99)。分析結果與DLS之結果大致符合。AF4結合多角度靜態光散射偵測器(multi-angle light scattering)亦能用以分析不同水體中Ag NP半徑,但其測值與DLS結果差異較大,且AF4中濾膜可能造成回收率偏低。SP-ICP-MS則可同時量測不同水體中的Ag NP粒徑及進行定量分析,SP-ICP-MS分析的粒徑也與穿透式電子顯微鏡之結果相符(p>0.05),Ag NP之整體回收率亦最佳。因此,HDC及SP-ICP-MS為較適合用以分析水體環境中Ag NP粒徑之技術。研究結果初步建立了量測水體環境中Ag NP之方法。


Engineered nanoparticle has widely used in medical products, cosmetics, textiles and food additives. In particular, silver nanoparticle (Ag NP) has become one of the most extensive used nanomaterials in the world. The potential risks of Ag NP were controlled by their fates and transformations once released into the environment. As a result, many emerging analytical techniques have been developed in recent years and used to detect the NPs in the water, including hydrodynamic chromatography (HDC), asymmetric flow field-flow fractionation (AF4) and single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS). However, these techniques have just applied to detect NPs in pure water system so far. Therefore, this study aims to establish a methodology for determining the particle size and concentration of Ag NP in the aquatic environment.
The average particle sizes of two types of commercial Ag NP solutions were 79.9 and 122 nm, respectively. In water samples, the pH values ranged from 6.9 to 8.4 and the conductivities were between 375 and 11200 μS/cm as well as various particles. The stability of Ag NP in different solutions showed that pH did not cause a lot of effects on the aggregation of Ag NPs. However, Ag NPs aggregated obviously in the electrolytic systems. CaCl2 caused a more significant effect than the NaCl since the divalent cations could compress the electrical double layer of Ag NP more easily. Besides, the aggregation and dissolution levels of Ag NP were reduced under low temperatures since the NP-NP collision frequency could be inhibited. Therefore, environmental samples containing NPs should be preserved under a low temperature without pH adjustment.
The result of pretreatment indicated that centrifugation with centrifugal speed of 2000×g for 2 minutes has a better performance for the removal of interferences, thus obtaining a higher recovery of Ag NP than filtration. For the HDC, a good correlation coefficient (R2 >0.99) was achieved with pH 10 water as a mobile phase. The particle size of Ag NP by HDC was consistent with DLS analysis in different water samples. AF4 can also determine the size of Ag NPs well but with low recoveries, which could result from the interactions between Ag NP and working membrane. For the SP-ICP-MS, both particle size and concentrations can be determined with high overall recoveries. The size results from SP-ICP-MS also corresponded to the TEM (p>0.05). Therefore, HDC and SP-ICP-MS were recommended for the environmental samples after the established pretreatment process. Combined the transformation studies of NPs and these analytical methods; the methodology to quantify and qualify the NPs in the aquatic environment was proposed.


誌謝 I
中文摘要 II
Abstract III
Contents IV
List of Figures VII
List of Tables X
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research objectives 2
Chapter 2 Literature review 4
2.1 Definition of nanomaterial 4
2.2 Properties of engineered nanoparticles, ENPs 4
2.2.1 Carbonaceous nanomaterials 5
2.2.1.1 Fullerene 5
2.2.1.2 Graphene 5
2.2.1.3 Carbon nanotube, CNT 6
2.2.2 Inorganic nanomaterials 6
2.2.2.1 Titanium dioxide nanoparticle, TiO2 NP 6
2.2.2.2 Zinc oxide nanoparticle, ZnO NP 7
2.2.2.3 Nano-scale zero valent iron, nZVI 8
2.2.2.4 Silver nanoparticle, Ag NP 9
2.3 Fate and behavior of nanomaterials in environment 11
2.3.1 Derjaguin-Landau-Verwey-Overbeek (DLVO) theory 12
2.3.2 Transformation and fate of Ag NPs in environments 13
2.3.2.1 The aggregation and sedimentation of Ag NPs 13
2.3.2.2 The dissolution of Ag NPs in aquatic system 15
2.4 Toxicities and risks of nanomaterials 16
2.5 Current technologies for sizing nanoparticles 17
2.5.1 Transmission electron microscopy, TEM 17
2.5.2 Dynamic light scattering, DLS 18
2.5.3 Hydrodynamic chromatography, HDC 19
2.5.4 Asymmetric flow field-flow fractionation, AF4 20
2.5.5 Single particle-inductively coupled plasma-mass spectrometry, SP-ICP-MS 22
Chapter 3 Materials and Methods 25
3.1 Chemicals and standards 25
3.2 Characterization of the manufactured silver nanoparticles 25
3.2.1 Transmission electron microscopy, TEM 26
3.2.2 Dynamic light scattering, DLS 26
3.2.3 X-ray diffraction, XRD 26
3.2.4 Fourier transform infrared spectrometer, FT-IR 26
3.2.5 X-ray photoelectron spectroscopy, XPS 27
3.3 Characterization of water samples 27
3.4 Preparation of wastewater surrogates 27
3.5 Stability of Ag NPs in different water samples 28
3.5.1 Effects of pH, salts and temperature on the aggregation of Ag NPs 28
3.5.2 Dissolution of silver ions analysis 29
3.6 Pretreatment process 29
3.6.1 Filtration and centrifugation for removing micro-scale particle 29
3.6.2 Particle collection of Ag NPs 30
3.7 Measurement of Ag NPs size in aqueous suspension 30
3.7.1 Dynamic light scattering, DLS 31
3.7.2 Hydrodynamic chromatography, HDC 31
3.7.2.1 Effect of eluent composition on the separation of particle 31
3.7.2.2 Size calibration 32
3.7.3 Asymmetric flow field- flow fractionation, AF4 32
3.7.4 Single particle-ICP-MS, SP-ICP-MS 32
3.7.4.1 Data processing 33
3.8 Quantification of Ag NPs by ICP spectrometry 33
3.8.1 Digestant condition establishment 33
3.8.2 Recovery percentage of Ag NPs 34
3.9 Calculate the concentration of each Ag NP size by RI profiles and ICP-MS results 34
Chapter 4 Results and Discussion 36
4.1 Characterization of silver nanoparticles 36
4.1.1 Ag NP standard dispersions 36
4.1.2 Commercial Ag NP solutions 37
4.2 Properties of water samples 42
4.2.1 Environmental waters 42
4.2.2 Wastewaters 45
4.2.3 Wastewater surrogates 45
4.3 The stability of Ag NPs in aquatic environments 47
4.3.1 The effects of pH, electrolytes and temperature on the stability of Ag NPs in the water 47
4.3.2 The effects of pH and temperature on the stability of Ag NPs in environmental waters 50
4.3.3 The effects of pH and temperature on the stability of Ag NPs in wastewaters 53
4.3.4 The effect of pH and temperature on the stability of commercial Ag NPs 55
4.4 Pretreatment process 59
4.4.1 The effect of filtration for removing micro-scale particles 59
4.4.2 The effect of centrifugation for removing micro-scale particles 60
4.4.3 Particle collection by filtration and ultra-centrifugation 64
4.4.4 Digestion condition establishment 65
4.5 Analytical instruments for sizing Ag NPs 65
4.5.1 Hydrodynamic chromatography, HDC 65
4.5.1.1 The effects of mobile phase on the separation of Ag NPs 65
4.5.1.2 Sizing Ag NPs in different media after HDC separation 68
4.5.1.3 Calculate the concentrations of each Ag NP size 73
4.5.2 Asymmetric flow field-flow fractionation, AF4 75
4.5.2.1 Choice of eluent and membrane 75
4.5.2.2 Sizing Ag NPs in different media by AF4 76
4.5.3 Single particle inductively coupled plasma mass, SP-ICP-MS 80
4.5.3.1 The effects of dwell time on the determination of Ag NPs size 80
4.5.3.2 Sizing Ag NPs in different media by SP-ICP-MS 80
4.6 The recovery of Ag NPs after size determination 84
4.7 The applicability of analytical methods for the environment 86
Chapter 5 Conclusions 89
Reference 91
Appendix 106


Ahamed, M., M.S. AlSalhi and M.K.J. Siddiqui. 2010. Silver nanoparticle applications and human health. Clin Chim Acta 411: 1841-1848.
Aitken, R.J., M.Q. Chaudhry, A.B.A. Boxall and M. Hull. 2006. Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med-Oxford 56: 300-306.
Akaighe, N., S.W. Depner, S. Banerjee and M. Sohn. 2013. Transport and deposition of Suwannee River Humic Acid/Natural Organic Matter formed silver nanoparticles on silica matrices: The influence of solution pH and ionic strength. Chemosphere 92: 406-412.
Alfadul, S. and A. Elneshwy. 2010. Use of nanotechnology in food processing, packaging and safety–review. African Journal of Food, Agriculture, Nutrition and Development 10.
Baalousha, M., A. Manciulea, S. Cumberland, K. Kendall and J.R. Lead. 2008. Aggregation and surface properties of iron oxide nanoparticles: Influence of pH and natural organic matter. Environ Toxicol Chem 27: 1875-1882.
Baalousha, M., Y. Nur, I. Romer, M. Tejamaya and J.R. Lead. 2013. Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Science of the Total Environment 454: 119-131.
Baalousha, M., B. Stolpe and J. Lead. 2011. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J Chromatogr A 1218: 4078-4103.
Baalousha, M., B. Stolpe and J.R. Lead. 2011. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: A critical review. Journal of Chromatography A 1218: 4078-4103.
Badawy, A.M.E., T.P. Luxton, R.G. Silva, K.G. Scheckel, M.T. Suidan and T.M. Tolaymat. 2010. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environmental science & technology 44: 1260-1266.
Bakshi, S., Z.L.L. He and W.G. Harris. 2015. Natural Nanoparticles: Implications for Environment and Human Health. Crit Rev Env Sci Tec 45: 861-904.
Birla, S.S., V.V. Tiwari, A.K. Gade, A.P. Ingle, A.P. Yadav and M.K. Rai. 2009. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48: 173-179.
Bouwmeester, H., S. Dekkers, M. Noordam, W. Hagens, A. Bulder, C. De Heer, et al. 2007. Health impact of nanotechnologies in food productionWageningen UR, RIKILT.
Brabec, C.J., S. Gowrisanker, J.J.M. Halls, D. Laird, S.J. Jia and S.P. Williams. 2010. Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv Mater 22: 3839-3856.
Bratsch, S.G. 1989. Standard Electrode-Potentials and Temperature Coefficients in Water at 298.15-K. J Phys Chem Ref Data 18: 1-21.
Brewer, A.K. and A.M. Striegel. 2009. Particle size characterization by quadruple-detector hydrodynamic chromatography. Anal Bioanal Chem 393: 295-302.
Carlson, C., S.M. Hussain, A.M. Schrand, L.K. Braydich-Stolle, K.L. Hess, R.L. Jones, et al. 2008. Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species. J Phys Chem B 112: 13608-13619.
Chappell, M.A., L.F. Miller, A.J. George, B.A. Pettway, C.L. Price, B.E. Porter, et al. 2011. Simultaneous dispersion-dissolution behavior of concentrated silver nanoparticle suspensions in the presence of model organic solutes. Chemosphere 84: 1108-1116.
Chen, J.L., S.R. Al-Abed, J.A. Ryan and Z.B. Li. 2001. Effects of pH on dechlorination of trichloroethylene by zero-valent iron. J Hazard Mater 83: 243-254.
Chen, K.L., S.E. Mylon and M. Elimelech. 2006. Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environmental science & technology 40: 1516-1523.
Chen, K.L., S.E. Mylon and M. Elimelech. 2007. Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations. Langmuir 23: 5920-5928.
Chiaramonte, E., L. Rhazi, T. Aussenac and D.R. White. 2012. Amylose and amylopectin in starch by asymmetric flow field-flow fractionation with multi-angle light scattering and refractive index detection (AF4-MALS-RI). J Cereal Sci 56: 457-463.
Cho, M., H.M. Chung, W.Y. Choi and J.Y. Yoon. 2005. Different inactivation Behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microb 71: 270-275.
Choi, O. and Z.Q. Hu. 2008. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42: 4583-4588.
Christian O. Dimkpa, D.E.L., Joan E. McLean, David W. Britt , Maxim I. Boyanov, and Anne J. Anderson 2013. Fate of CuO and ZnO Nano- and Microparticles in the Plant Environment. Environ. Sci. Technol. 4: 4734-4742.
Christian, P., F. Von der Kammer, M. Baalousha and T. Hofmann. 2008. Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17: 326-343.
Commission, E.E. 2011. Commission Recommendation of 18 October 2011 on the definition of nanomaterial. Official J Eur Union 50: 38-40.
Cumberland, S.A. and J.R. Lead. 2009. Particle size distributions of silver nanoparticles at environmentally relevant conditions. J Chromatogr A 1216: 9099-9105.
Cumberland, S.A. and J.R. Lead. 2013. Synthesis of NOM-Capped Silver Nanoparticles: Size, Morphology, Stability, and NOM Binding Characteristics. Acs Sustain Chem Eng 1: 817-825.
Dan, Y., W. Zhang, R. Xue, X. Ma, C. Stephan and H. Shi. 2015. Characterization of Gold Nanoparticle Uptake by Tomato Plants Using Enzymatic Extraction Followed by Single-Particle Inductively Coupled Plasma–Mass Spectrometry Analysis. Environ Sci Technol 49: 3007-3014.
Dan, Y.B., W.L. Zhang, R.M. Xue, X.M. Ma, C. Stephan and H.L. Shi. 2015. Characterization of Gold Nanoparticle Uptake by Tomato Plants Using Enzymatic Extraction Followed by Single-Particle Inductively Coupled Plasma-Mass Spectrometry Analysis. Environ Sci Technol 49: 3007-3014.
Degueldre, C., P.Y. Favarger and C. Bitea. 2004. Zirconia colloid analysis by single particle inductively coupled plasma-mass spectrometry. Anal Chim Acta 518: 137-142.
Degueldre, C., P.Y. Favarger, R. Rosse and S. Wold. 2006. Uranium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta 68: 623-628.
Degueldre, C., P.Y. Favarger and S. Wold. 2006. Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode. Anal Chim Acta 555: 263-268.
Delay, M., T. Dolt, A. Woellhaf, R. Sembritzki and F.H. Frimmel. 2011. Interactions and stability of silver nanoparticles in the aqueous phase: Influence of natural organic matter (NOM) and ionic strength. J Chromatogr A 1218: 4206-4212.
Derjaguin, B.V. 1941. Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. USSR 14: 633-662.
Desiree L. Plata, C.M.R., and Philip M. Gschwend. 2012. Thermogravimetry-Mass Spectrometry for Carbon Nanotube Detection in Complex Mixtures. Environ. Sci. Technol. 46: 12254-12261.
Diaz, L., C. Peyrot and K.J. Wilkinson. 2015. Characterization of polymeric nanomaterials using analytical ultracentrifugation. Environmental science & technology.
Divina A. Navarro, R.S.K., Jason K. Kirby, Sheridan M. Martin, Ali Shareef, Jun Du, Mike J. McLaughlin. 2013. Behaviour of fullerenes (C60) in the terrestrial environment:Potential release from biosolids-amended soils. Journal of Hazardous Materials 262: 496-503.
Domingos, R.F., M.A. Baalousha, Y. Ju-Nam, M.M. Reid, N. Tufenkji, J.R. Lead, et al. 2009. Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ Sci Technol 43: 7277-7284.
El Badawy, A.M., T.P. Luxton, R.G. Silva, K.G. Scheckel, M.T. Suidan and T.M. Tolaymat. 2010. Impact of Environmental Conditions (pH, Ionic Strength, and Electrolyte Type) on the Surface Charge and Aggregation of Silver Nanoparticles Suspensions. Environ Sci Technol 44: 1260-1266.
Elliott, D.W. and W.X. Zhang. 2003. Field assessment of nanoscale bimetallic particles for groundwater treatment. Abstr Pap Am Chem S 225: U971-U971.
Elsaesser, A. and C.V. Howard. 2012. Toxicology of nanoparticles. Advanced drug delivery reviews 64: 129-137.
Evan P. Gray, T.A.B., Christopher P. Higgins, Rolf U. Halden, Paul Westerhoff and James F. Ranville. 2012. Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS. J. Anal. At. Spectrom. 27.
Fabricius, A.-L., L. Duester, B. Meermann and T.A. Ternes. 2014. ICP-MS-based characterization of inorganic nanoparticles—sample preparation and off-line fractionation strategies. Analytical and bioanalytical chemistry 406: 467-479.
Faghihi, K. and M. Shabanian. 2011. Thermal and Optical Properties of Silver-Polyimide Nanocomposite Based on Diphenyl Sulfone Moieties in the Main Chain. J Chil Chem Soc 56: 665-667.
Fariya Sharif, P.W.a.P.H. 2013. Sorption of trace organics and engineered nanomaterials onto wetland plant material. Environ. Sci.: Processes Impacts 15: 267-274.
Feng, Q.L., J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim and J.O. Kim. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52: 662-668.
Geiss, O., C. Cascio, D. Gilliland, F. Franchini and J. Barrero-Moreno. 2013. Size and mass determination of silver nanoparticles in an aqueous matrix using asymmetric flow field flow fractionation coupled to inductively coupled plasma mass spectrometer and ultraviolet-visible detectors. J Chromatogr A 1321: 100-108.
Geranio, L., M. Heuberger and B. Nowack. 2009. The Behavior of Silver Nanotextiles during Washing. Environ Sci Technol 43: 8113-8118.
Giacalone, F. and N. Martin. 2006. Fullerene polymers: Synthesis and properties. Chem Rev 106: 5136-5190.
Giasuddin, A.B.M., S.R. Kanel and H. Choi. 2007. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ Sci Technol 41: 2022-2027.
Giddings, J.C. 1966. A new separation concept based on a coupling of concentration and flow nonuniformities. Separation Science 1: 123-125.
Giddings, J.C., M.A. Benincasa, M.K. Liu and P. Li. 1992. Separation of Water-Soluble Synthetic and Biological Macromolecules by Flow Field-Flow Fractionation. J Liq Chromatogr 15: 1729-1747.
Giddings, J.C., G.C. Lin and M.N. Myers. 1978. Fractionation and Size Distribution of Water-Soluble Polymers by Flow Field-Flow Fractionation. J Liq Chromatogr 1: 1-20.
Giddings, J.C., M.N. Myers, G.C. Lin and M. Martin. 1977. Polymer Analysis and Characterization by Field-Flow Fractionation (One-Phase Chromatography). J Chromatogr 142: 23-38.
Gigault, J., J.M. Pettibone, C. Schmitt and V.A. Hackley. 2014. Rational strategy for characterization of nanoscale particles by asymmetric- flow field flow fractionation: A tutorial. Anal Chim Acta 809: 9-24.
Glazier, R., R. Venkatakrishnan, F. Gheorghiu, L. Walata, R. Nash and W.X. Zhang. 2003. Nanotechnology takes root. Civil Eng 73: 64-69.
Goel, A., J.B. Howard and J.B. Vander Sande. 2004. Size analysis of single fullerene molecules by electron microscopy. Carbon 42: 1907-1915.
Gonzalez-Benito, J. 2003. The nature of the structural gradient in epoxy curing at a glass fiber/epoxy matrix interface using FTIR imaging. Journal of Colloid and interface science 267: 326-332.
Gorla, C.R., N.W. Emanetoglu, S. Liang, W.E. Mayo, Y. Lu, M. Wraback, et al. 1999. Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (01(1)over-bar2) sapphire by metalorganic chemical vapor deposition. J Appl Phys 85: 2595-2602.
Gottschalk, F., T. Sonderer, R.W. Scholz and B. Nowack. 2010. Possibilities and Limitations of Modeling Environmental Exposure to Engineered Nanomaterials by Probabilistic Material Flow Analysis. Environ Toxicol Chem 29: 1036-1048.
Grassian, V.H. 2008. When Size Really Matters: Size-Dependent Properties and Surface Chemistry of Metal and Metal Oxide Nanoparticles in Gas and Liquid Phase Environments. J Phys Chem C 112: 18303-18313.
Gray, E.P., T.A. Bruton, C.P. Higgins, R.U. Halden, P. Westerhoff and J.F. Ranville. 2012. Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS. J Anal Atom Spectrom 27: 1532-1539.
Gray, E.P., J.G. Coleman, A.J. Bednar, A.J. Kennedy, J.F. Ranville and C.P. Higgins. 2013. Extraction and Analysis of Silver and Gold Nanoparticles from Biological Tissues Using Single Particle Inductively Coupled Plasma Mass Spectrometry. Environmental Science & Technology 47: 14315-14323.
Hackley, J.G.V.A. 2013. Observation of size-independent effects in nanoparticle retention behavior during asymmetric-flow field-flow fractionation. Anal Bioanal Chem 405: 6251-6258.
Hagendorfer, H., R. Kaegi, J. Traber, S.F.L. Mertens, R. Scherrers, C. Ludwig, et al. 2011. Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization - Prospects and limitations demonstrated on Au nanoparticles. Anal Chim Acta 706: 367-378.
Hineman, A. and C. Stephan. 2014. Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. J Anal Atom Spectrom 29: 1252-1257.
Hong, R.Y., J.H. Li, L.L. Chen, D.Q. Liu, H.Z. Li, Y. Zheng, et al. 2009. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol 189: 426-432.
Hoque, M.E., K. Khosravi, K. Newman and C.D. Metcalfe. 2012. Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry. Journal of Chromatography A 1233: 109-115.
Hu, J.-D., Y. Zevi, X.-M. Kou, J. Xiao, X.-J. Wang and Y. Jin. 2010. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Science of the Total Environment 408: 3477-3489.
Huang, Y., S. Chen, X. Bing, C. Gao, T. Wang and B. Yuan. 2011. Nanosilver migrated into food‐simulating solutions from commercially available food fresh containers. Packaging Technology and Science 24: 291-297.
Huang, Z.B., X. Zheng, D.H. Yan, G.F. Yin, X.M. Liao, Y.Q. Kang, et al. 2008. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24: 4140-4144.
Huynh, K.A. and K.L. Chen. 2011. Aggregation Kinetics of Citrate and Polyvinylpyrrolidone Coated Silver Nanoparticles in Monovalent and Divalent Electrolyte Solutions. Environ Sci Technol 45: 5564-5571.
Hwa, K.Y. and B. Subramani. 2014. Synthesis of zinc oxide nanoparticles on graphene-carbon nanotube hybrid for glucose biosensor applications. Biosens Bioelectron 62: 127-133.
Iijima, S. 1991. Helical Microtubules of Graphitic Carbon. Nature 354: 56-58.
Jani Tuoriniemi, G.C., and Martin Hassellöv. 2012. Size Discrimination and Detection Capabilities of Single-Particle ICPMS for Environmental Analysis of Silver Nanoparticles. Anal. Chem. 84: 3965-3972.
Jia, C.Z., Y.X. Wang, C.X. Zhang, Q.Y. Qin, S.Q. Kong and S.K. Yao. 2012. Photocatalytic Degradation of Bisphenol A in Aqueous Suspensions of Titanium Dioxide. Environ Eng Sci 29: 630-637.
Jin, X., M.H. Li, J.W. Wang, C. Marambio-Jones, F.B. Peng, X.F. Huang, et al. 2010. High-Throughput Screening of Silver Nanoparticle Stability and Bacterial Inactivation in Aquatic Media: Influence of Specific Ions. Environ Sci Technol 44: 7321-7328.
Jin, Y.G., S.C. Hawkins, C.P. Huynh and S. Su. 2013. Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture. Energ Environ Sci 6: 2591-2596.
Kahru, A. and H.C. Dubourguier. 2010. From ecotoxicology to nanoecotoxicology. Toxicology 269: 105-119.
Karlsson, H.L., J. Gustafsson, P. Cronholm and L. Moller. 2009. Size-dependent toxicity of metal oxide particles-A comparison between nano- and micrometer size. Toxicol Lett 188: 112-118.
Kim, S., J.E. Choi, J. Choi, K.H. Chung, K. Park, J. Yi, et al. 2009. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol in Vitro 23: 1076-1084.
Kirkland, K., K. Neilson and D. McCombs. 1991. Comparison of a new ovomucoid and a second-generation α 1-acid glycoprotein-based chiral column for the direct high-performance liquid chromatography resolution of drug enantiomers. Journal of Chromatography A 545: 43-58.
Kis, A. and A. Zettl. 2008. Nanomechanics of carbon nanotubes. Philos T R Soc A 366: 1591-1611.
Kittler, S., C. Greulich, M. Koller and M. Epple. 2009. Synthesis of PVP-coated silver nanoparticles and their biological activity towards human mesenchymal stem cells. Materialwiss Werkst 40: 258-264.
Kong, H. and J. Jang. 2006. One-step fabrication of silver nanoparticle embedded polymer nanofibers by radical-mediated dispersion polymerization. Chem. Commun.: 3010-3012.
Korgel, B.A., J.H. van Zanten and H.G. Monbouquette. 1998. Vesicle size distributions measured by flow field-flow fractionation coupled with multiangle light scattering. Biophys J 74: 3264-3272.
Krishnaraj, C., E. Jagan, S. Rajasekar, P. Selvakumar, P. Kalaichelvan and N. Mohan. 2010. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces 76: 50-56.
Kroto, H.W., J.R. Heath, S.C. O''Brien, R.F. Curl and R.E. Smalley. 1985. C60: Buckminsterfullerene. Nature 318: 162-163.
Kuzma, A., M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, et al. 2012. Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles. J Appl Phys 112.
Kvitek, L., A. Panacek, J. Soukupova, M. Kolar, R. Vecerova, R. Prucek, et al. 2008. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112: 5825-5834.
Laborda, F., E. Bolea and J. Jimenez-Lamana. 2014. Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. Analytical Chemistry 86: 2270-2278.
Lang, T., K.A. Eslahian and M. Maskos. 2012. Ion Effects in Field-Flow Fractionation of Aqueous Colloidal Polystyrene. Macromol Chem Phys 213: 2353-2361.
Lee, S., X. Bi, R.B. Reed, J.F. Ranville, P. Herckes and P. Westerhoff. 2014. Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ Sci Technol 48: 10291-10300.
Levard, C., E.M. Hotze, G.V. Lowry and G.E. Brown. 2012. Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity. Environ Sci Technol 46: 6900-6914.
Levard, C., B.C. Reinsch, F.M. Michel, C. Oumahi, G.V. Lowry and G.E. Brown. 2011. Sulfidation Processes of PVP-Coated Silver Nanoparticles in Aqueous Solution: Impact on Dissolution Rate. Environmental Science & Technology 45: 5260-5266.
Li, X.A., J.J. Lenhart and H.W. Walker. 2010. Dissolution-Accompanied Aggregation Kinetics of Silver Nanoparticles. Langmuir 26: 16690-16698.
Li, Y., W. Zhang, J.F. Niu and Y.S. Chen. 2013. Surface-Coating-Dependent Dissolution, Aggregation, and Reactive Oxygen Species (ROS) Generation of Silver Nanoparticles under Different Irradiation Conditions. Environ Sci Technol 47: 10293-10301.
Liu, J.F., S.J. Yu, Y.G. Yin and J.B. Chao. 2012. Methods for separation, identification, characterization and quantification of silver nanoparticles. Trac-Trend Anal Chem 33: 95-106.
Liu, J.Y. and R.H. Hurt. 2010. Ion Release Kinetics and Particle Persistence in Aqueous Nano-Silver Colloids. Environmental Science & Technology 44: 2169-2175.
Liu, J.Y., D.A. Sonshine, S. Shervani and R.H. Hurt. 2010. Controlled Release of Biologically Active Silver from Nanosilver Surfaces. Acs Nano 4: 6903-6913.
Liu, W.-S., Y.-H. Peng, C.-E. Shiung and Y.-h. Shih. 2012. The effect of cations on the aggregation of commercial ZnO nanoparticle suspension. Journal of Nanoparticle Research 14: 1-10.
Liu, W.S. and Y.H. Shih. 2010. The fate and transformation of nanoparticles in water environmental media. Environmental Protection Admistration, Taiwan.
Loeschner, K., J. Navratilova, C. Kbler, K. Mlhave, S. Wagner, F. von der Kammer, et al. 2013. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Analytical and bioanalytical chemistry 405: 8185-8195.
Lu, W.T., D. Senapati, S.G. Wang, O. Tovmachenko, A.K. Singh, H.T. Yu, et al. 2010. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett 487: 92-96.
Lyons, D.M., J. Mohanraj, G. Accorsi, N. Armaroli and P.D.W. Boyd. 2011. A supramolecular porphyrin-ferrocene-fullerene triad. New J Chem 35: 632-639.
Ma, R., C. Levard, S.M. Marinakos, Y.W. Cheng, J. Liu, F.M. Michel, et al. 2012. Size-Controlled Dissolution of Organic-Coated Silver Nanoparticles. Environmental Science & Technology 46: 752-759.
Marina E. Quadros, R.P., IV, Nicolle S. Tulve, Robert Willis, Kim Rogers, Treye A. Thomas, and Linsey C. Marr. 2013. Release of Silver from Nanotechnology-Based Consumer Products for Children. Environ. Sci. Technol 47: 8894-8901.
Martel, R., T. Schmidt, H.R. Shea, T. Hertel and P. Avouris. 1998. Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73: 2447-2449.
Matheson, L.J. and P.G. Tratnyek. 1994. Reductive Dehalogenation of Chlorinated Methanes by Iron Metal. Environ Sci Technol 28: 2045-2053.
McGowan, G.R. and M.A. Langhorst. 1982. Development and application of an integrated, high-speed, computerized hydrodynamic chromatograph. Journal of Colloid And Interface Science 89: 94-106.
Misra, S.K., A. Dybowska, D. Berhanu, S.N. Luoma and E. Valsami-Jones. 2012. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci Total Environ 438: 225-232.
Mitrano, D.M., J.F. Ranville, A. Bednar, K. Kazor, A.S. Hering and C.P. Higgins. 2014. Tracking dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory, natural, and processed waters using single particle ICP-MS (spICP-MS). Environ-Sci Nano 1: 248-259.
Montano, M.D., H.R. Badiei, S. Bazargan and J.F. Ranvile. 2014. Improvements in the detection and characterization of engineered nanoparticles using spICP-MS with microsecond dwell times. Environmental Science: Nano 1: 338-346.
Montano, M.D., H.R. Badiei, S. Bazargan and J.F. Ranville. 2014. Improvements in the detection and characterization of engineered nanoparticles using spICP-MS with microsecond dwell times. Environ-Sci Nano 1: 338-346.
Montano, M.D., G.V. Lowry, F. von der Kammer, J. Blue and J.F. Ranville. 2014. Current status and future direction for examining engineered nanoparticles in natural systems. Environ Chem 11: 351-366.
Mueller, N.C. and B. Nowack. 2008. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42: 4447-4453.
Mukherjee, P., A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, et al. 2001. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett 1: 515-519.
N. von Goetz, C.L., L. Windler, B. Nowack, M. Heuberger, and K. Hungerbühler. 2013. Migration of Ag- and TiO2‑(Nano)particles from Textiles into Artificial Sweat under Physical Stress: Experiments and Exposure Modeling. Environ. Sci. Technol. 47: 9979-9987.
Nowack, B. and T.D. Bucheli. 2007. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150: 5-22.
Olesik, J.W. and P.J. Gray. 2012. Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: determination of the number of particles and the analyte mass in each particle. J Anal Atom Spectrom 27: 1143-1155.
Pace, H.E., N.J. Rogers, C. Jarolimek, V.A. Coleman, E.P. Gray, C.P. Higgins, et al. 2012. Single Particle Inductively Coupled Plasma-Mass Spectrometry: A Performance Evaluation and Method Comparison in the Determination of Nanoparticle Size. Environmental Science & Technology 46: 12272-12280.
Park, H.J., J.Y. Kim, J. Kim, J.H. Lee, J.S. Hahn, M.B. Gu, et al. 2009. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43: 1027-1032.
Peretyazhko, T.S., Q.B. Zhang and V.L. Colvin. 2014. Size-Controlled Dissolution of Silver Nanoparticles at Neutral and Acidic pH Conditions: Kinetics and Size Changes. Environ Sci Technol 48: 11954-11961.
Pergantis, S.A., T.L. Jones-Lepp and E.M. Heithmar. 2012. Hydrodynamic Chromatography Online with Single Particle-Inductively Coupled Plasma Mass Spectrometry for Ultratrace Detection of Metal-Containing Nanoparticles. Anal Chem 84: 6454-6462.
Peters, R., Z. Herrera-Rivera, A. Undas, M. van der Lee, H. Marvin, H. Bouwmeester, et al. 2015. Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices. J Anal Atom Spectrom.
Peters, R., E. Kramer, A.G. Oomen, Z.E.H. Rivera, G. Oegema, P.C. Tromp, et al. 2012. Presence of Nano-Sized Silica during In Vitro Digestion of Foods Containing Silica as a Food Additive. Acs Nano 6: 2441-2451.
Peters, R.J.B., G. van Bemmel, Z. Herrera-Rivera, H.P.F.G. Helsper, H.J.P. Marvin, S. Weigel, et al. 2014. Characterization of Titanium Dioxide Nanoparticles in Food Products: Analytical Methods To Define Nanoparticles. J Agr Food Chem 62: 6285-6293.
Petersen, K.E., E. Manangon, J.L. Hood, S.A. Wickline, D.P. Fernandez, W.P. Johnson, et al. 2014. A review of exosome separation techniques and characterization of B16-F10 mouse melanoma exosomes with AF4-UV-MALS-DLS-TEM. Analytical and Bioanalytical Chemistry 406: 7855-7866.
Petosa, A.R., D.P. Jaisi, I.R. Quevedo, M. Elimelech and N. Tufenkji. 2010. Aggregation and Deposition of Engineered Nanomaterials in Aquatic Environments: Role of Physicochemical Interactions. Environ Sci Technol 44: 6532-6549.
Piccapietra, F., L. Sigg and R. Behra. 2011. Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater. Environmental science & technology 46: 818-825.
Pillai, S.C., J.M. Kelly, D.E. McCormack and R. Ramesh. 2004. Self-assembled arrays of ZnO nanoparticles and their application as varistor materials. J Mater Chem 14: 1572-1578.
Poda, A.R., A.J. Bednar, A.J. Kennedy, A. Harmon, M. Hull, D. Mitrano, et al. 2011. Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. Journal of Chromatography A 1218: 4219-4225.
Poda, A.R., A.J. Bednar, A.J. Kennedy, A. Harmon, M. Hull, D.M. Mitrano, et al. 2011. Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. Journal of Chromatography A 1218: 4219-4225.
Pouran, H.M., F.L. Martin and H. Zhang. 2014. Measurement of ZnO Nanoparticles Using Diffusive Gradients in Thin Films: Binding and Diffusional Characteristics. Anal Chem 86: 5906-5913.
Qin, Z.H., H.Y. Sun, Z. Jiang, X.L. Jiao and D.R. Chen. 2013. Synthesis of metal sulfide nanoboxes based on Kirkendall effect and Pearson hardness. Crystengcomm 15: 897-902.
Qureshi, R.N. and W.T. Kok. 2010. Optimization of asymmetrical flow field-flow fractionation (AF4).
Ralf Kaegi, B.S., Steffen Zuleeg, Harald Hagendorfer, Elisabeth Mueller, Roger Vonbank, Markus Boller, Michael Burkhardt. 2010. Release of silver nanoparticles from outdoor facades. Environ. Pollut. 158: 2900-2905.
Reidy, B., A. Haase, A. Luch, K.A. Dawson and I. Lynch. 2013. Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials 6: 2295-2350.
Reschiglian, P., D.C. Rambaldi and A. Zattoni. 2011. Flow field-flow fractionation with multiangle light scattering detection for the analysis and characterization of functional nanoparticles. Anal Bioanal Chem 399: 197-203.
Robaeys, P., F. Bonaccorso, E. Bourgeois, J. D''Haen, W. Dierckx, W. Dexters, et al. 2014. Enhanced performance of polymer: fullerene bulk heterojunction solar cells upon graphene addition. Appl Phys Lett 105.
Roberson, M., V. Rangari and S. Jeelani. 2014. Synthesis and Characterization Silver, Zinc Oxide and Hybrid Silver/Zinc Oxide Nanoparticles for Antimicrobial Applications. Nano Life 4: 1440003.
Robert B. Reed, C.P.H., Paul Westerhoff, Soheyl Tadjikid and James F. Ranville. 2012. Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 27.
Robert B. Reed, D.G.G., Kristofer L. Marsh, Sonja S. Capracotta, Christopher P. Higgins, D. Howard Fairbrother and James F. Ranville. 2013. Detection of single walled carbon nanotubes by
monitoring embedded metals. Environ. Sci.: Processes Impacts 15: 204-213.
Ruud Peters, E.K., Agnes G. Oomen, Zahira E. Herrera Rivera, Gerlof Oegema, Peter C. Tromp, Remco Fokkink, Anton Rietveld, Hans J. P. Marvin, Stefan Weigel, Ad A. C. M. Peijnenburg, and Hans Bouwmeester. 2012. Presence of Nano-Sized Silica during In Vitro Digestion of Foods Containing Silica as a Food Additive. ACS NANO 6: 2441-2451.
Sabrina Gschwind, H.H., Daniel A. Frick, and Detlef Günther. 2013. Mass Quantification of Nanoparticles by Single Droplet Calibration Using Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 85: 5875-5883.
Sahoo, S. and A.K. Bhowmick. 2007. Influence of ZnO nanoparticles on the cure characteristics and mechanical properties of carboxylated nitrile rubber. J Appl Polym Sci 106: 3077-3083.
Sainio, L.L.S.H.M.S.P. and Received:. 2012. Liquid chromatography–mass spectrometry
for C60 fullerene analysis: optimisation and comparison
of three ionisation techniques. Anal Bioanal Chem 403: 1931-1938.
Schmidt, B., K. Loeschner, N. Hadrup, A. Mortensen, J.J. Sloth, C. Bender Koch, et al. 2011. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry. Analytical chemistry 83: 2461-2468.
Schroeder, B.C., Z. Li, M.A. Brady, G.C. Faria, R.S. Ashraf, C.J. Takacs, et al. 2014. Enhancing Fullerene-Based Solar Cell Lifetimes by Addition of a Fullerene Dumbbell. Angew Chem Int Edit 53: 12870-12875.
Seyed Mohammad Majedi, H.K.L., and Barry C. Kelly. 2012. Chemometric Analytical Approach for the Cloud Point Extraction and Inductively Coupled Plasma Mass Spectrometric Determination of Zinc Oxide Nanoparticles in Water Samples. Anal. Chem. 84: 6546-6552.
Shih, Y.H. and M.J. Li. 2013. The development of measurement technology for inorganic engineering nanoparticles in aquatic environment. Environmental Protection Admistration, Taiwan.
Shih, Y.H., S.C. Wu and R.A. Doong. 2008. The fate and transformation of nanoparticles in water environment media. EPA.
Shih, Y.H., S.C. Wu and R.A. Doong. 2009. The fate and transformation of nanoparticles in water environment media. EPA.
Shih, Y.H., S.C. Wu and R.A. Doong. 2010. The fate and transformation of nanoparticles in water environment media. EPA.
Shih, Y.H., S.C. Wu and R.A. Doong. 2011. The fate and transformation of nanoparticles in water environment media. EPA.
Shih, Y.H., S.C. Wu and R.A. Doong. 2012. The fate and transformation of nanoparticles in water environment media. EPA.
Singh, S.C. and R. Gopal. 2008. Synthesis of colloidal zinc oxide nanoparticles by pulsed laser ablation in aqueous media. Physica E 40: 724-730.
Snyder, L.R. and J.J. Kirkland. 1979. Introduction to modern liquid chromatography.
Sojic, D.V., V.B. Anderluh, D.Z. Orcic and B.F. Abramovic. 2009. Photodegradation of clopyralid in TiO2 suspensions: Identification of intermediates and reaction pathways. J Hazard Mater 168: 94-101.
Song, J.Y. and B.S. Kim. 2009. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioproc Biosyst Eng 32: 79-84.
Sotiriou, G.A., A. Meyer, J.T.N. Knijnenburg, S. Panke and S.E. Pratsinis. 2012. Quantifying the Origin of Released Ag+ Ions from Nanosilver. Langmuir 28: 15929-15936.
Stephanie C. Bolyard, D.R.R., and Swadeshmukul Santra. 2013. Behavior of Engineered Nanoparticles in Landfill Leachate. Environ. Sci. Technol. 2013: 81114-88122.
Telgmann, L., C.D. Metcalfe and H. Hintelmann. 2014. Rapid size characterization of silver nanoparticles by single particle ICP-MS and isotope dilution. J Anal Atom Spectrom 29: 1265-1272.
Thostenson, E.T., Z.F. Ren and T.W. Chou. 2001. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61: 1899-1912.
Tian, F., Z. Wu, Y. Yan, X. Ge and Y. Tong. 2014. Photodegradation of formaldehyde by activated carbon loading TiO2 synthesized via microwave irradiation. Korean Journal of Chemical Engineering.
Tiede, K., A.B.A. Boxall, D. Tiede, S.P. Tear, H. David and J. Lewis. 2009. A robust size-characterisation methodology for studying nanoparticle behaviour in ''real'' environmental samples, using hydrodynamic chromatography coupled to ICP-MS. J Anal Atom Spectrom 24: 964-972.
Tofighy, M.A. and T. Mohammadi. 2011. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater 185: 140-147.
Tso, C.P., C.M. Zhung, Y.H. Shih, Y.M. Tseng, S.C. Wu and R.A. Doong. 2010. Stability of metal oxide nanoparticles in aqueous solutions. Water Sci Technol 61: 127-133.
Tsogas, G.Z., D.L. Giokas and A.G. Vlessidis. 2014. Ultratrace Determination of Silver, Gold, and Iron Oxide Nanoparticles by Micelle Mediated Preconcentration/Selective Back-Extraction Coupled with Flow Injection Chemiluminescence Detection. Anal Chem 86: 3484-3492.
Upadhyay, R.K., N. Soin and S.S. Roy. 2014. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. Rsc Adv 4: 3823-3851.
Vashist, S.K., D. Zheng, K. Al-Rubeaan, J.H.T. Luong and F.S. Sheu. 2011. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv 29: 169-188.
Verwey, E. 1947. Theory of the stability of lyophobic colloids. The Journal of Physical Chemistry 51: 631-636.
Wagner, M., C. Pietsch, L. Tauhardt, A. Schallon and U.S. Schubert. 2014. Characterization of cationic polymers by asymmetric flow field-flow fractionation and multi-angle light scattering-A comparison with traditional techniques. Journal of Chromatography A 1325: 195-203.
Wang, J. 2005. Carbon-nanotube based electrochemical biosensors: A review. Electroanal 17: 7-14.
Wang, Y.G., S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, et al. 2003. Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. J Appl Phys 94: 354-358.
Weitz, D., D. Pine, P. Pusey and R. Tough. 1989. Nondiffusive Brownian motion studied by diffusing-wave spectroscopy. Physical review letters 63: 1747.
Wright, J.B., K. Lam, D. Hansen and R.E. Burrell. 1999. Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 27: 344-350.
Wu, N., Y. Wyart, Y. Liu, J. Rose and P. Moulin. 2013. An overview of solid/liquid separation methods and size fractionation techniques for engineered nanomaterials in aquatic environment. Environmental Technology Reviews 2: 55-70.
Wyatt, P.J. 1993. Light-Scattering and the Absolute Characterization of Macromolecules. Anal Chim Acta 272: 1-40.
Yegin, B.A. and A. Lamprecht. 2006. Lipid nanocapsule size analysis by hydrodynamic chromatography and photon correlation spectroscopy. International journal of pharmaceutics 320: 165-170.
Yong, Y.J., Y.L. Li, H.B. Liu, S. Wang, N. Wang, J.P. Zhuang, et al. 2005. Self-assembled monolayers of porphyrin-perylenetetracarboxylic diimide-[60] fullerene on indium tin oxide electrodes: enhancement of light harvesting in the visible light region. Nanotechnology 16: 1899-1904.
Zhang, W., Y. Yao, K.G. Li, Y. Huang and Y.S. Chen. 2011. Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles. Environ Pollut 159: 3757-3762.
Zhang, W., Y. Yao, N. Sullivan and Y.S. Chen. 2011. Modeling the Primary Size Effects of Citrate-Coated Silver Nanoparticles on Their Ion Release Kinetics. Environmental Science & Technology 45: 4422-4428.
Zhang, Y., Y. Chen, P. Westerhoff, K. Hristovski and J.C. Crittenden. 2008. Stability of commercial metal oxide nanoparticles in water. Water research 42: 2204-2212.
Zhang, Y.H., Z.R. Tang, X.Z. Fu and Y.J. Xu. 2010. TiO2-Graphene Nanocomposites for Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiO2-Graphene Truly Different from Other TiO2-Carbon Composite Materials? Acs Nano 4: 7303-7314.
Zhao, G.X., J.X. Li, X.M. Ren, C.L. Chen and X.K. Wang. 2011. Few-Layered Graphene Oxide Nanosheets As Superior Sorbents for Heavy Metal Ion Pollution Management. Environ Sci Technol 45: 10454-10462.
Zhao, J., Z.Y. Wang, J.C. White and B.S. Xing. 2014. Graphene in the Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation. Environ Sci Technol 48: 9995-10009.
Zhu, J.J., S.W. Liu, O. Palchik, Y. Koltypin and A. Gedanken. 2000. Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir 16: 6396-6399.
Zhuang, Y., L.T. Jin and R.G. Luthy. 2012. Kinetics and pathways for the debromination of polybrominated diphenyl ethers by bimetallic and nanoscale zerovalent iron: Effects of particle properties and catalyst. Chemosphere 89: 426-432.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top