跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 15:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:紀政宏
研究生(外文):Cheng-Hung Chi
論文名稱:應用自適應模糊滑動模式控制策略與陀螺儀平衡器於自動導引自行車之平衡控制
論文名稱(外文):Balancing a Riderless Bicycle with Adaptive Fuzzy Sliding Mode Control and Gyroscopic Balancer
指導教授:周瑞仁周瑞仁引用關係
指導教授(外文):Jui-Jen Chou
口試委員:艾群程安邦黃緒哲
口試日期:2015-07-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:68
中文關鍵詞:自動導引自行車陀螺儀平衡器平衡控制模糊滑動模式控制自適應模糊滑動模式控制
外文關鍵詞:Riderless bicycleGyroscopic balancerFSMCAFSMCBalancing control
相關次數:
  • 被引用被引用:1
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在建立一自動導引自行車平台,應用陀螺儀平衡器 (Gyroscopic balancer) 與自適應模糊滑動模式控制策略 (Adaptive fuzzy sliding mode control, AFSMC) 於平衡控制,並比較使用AFSMC時與使用模糊滑動模式控制策略 (Fuzzy sliding mode control, FSMC) 時之差異。
首先應用FSMC控制策略與陀螺儀平衡器於自動導引自行車平台。陀螺儀平衡器具有下列幾項優點,如響應時間相對於其他平衡器較快、相對於其他平衡器能產生較大的力矩及具有較低的質量比(平衡器重量/自動導引自行車系統重量)。而FSMC控制策略相較於PID對非線性系統有較好的控制效果,跟SMC相比也能降低切跳現象與減少高頻響應,更能降低非線性系統在線性化時的影響。為了驗證上述所說的各項特質,本研究設計且進行了許多模擬及實驗。實驗結果說明本平台能克服崎嶇的地面,並有效的抵抗衝擊行的干擾,而實驗結果與模擬結果的一致性也驗證了先前所推導的動力學模型。
然而陀螺儀平衡器因為機構的限制,在遭受一連續性干擾時,飛輪勢必得往固定一方向旋轉以產生足夠的力矩去抵抗干擾,故當飛輪達到旋轉上下限時,平台即會失去自主平衡的能力。因此本論文旨在發展AFSMC控制器取代FSMC控制器,在遭受連續干擾的時候,控制器能調整本身的輸出命令,去避免飛輪牴觸到旋轉角上下限,進而有效的提升自行車平台抵抗連續性干擾的能力。從模擬的結果看來,AFSMC控制策略在任何情況下平衡能力與抵抗干擾能力皆不輸FSMC,更重要的是AFSMC控制策略抵抗連續性干擾的能力遠優於FSMC控制策略,說明了使用AFMSC控制策略能有效地的提升平台的穩定度。


A riderless bicycle has been developed with a gyroscopic balancer controller by a Fuzzy Sliding Mode Controller (FSMC) and an Adaptive Fuzzy Sliding Mode Controller (AFSMC). The FSMC controller has first been implemented because it has better performance at controlling nonlinear systems than the one with PID. The FSMC can also reduce the chattering phenomenon caused by SMC and the effect of linearizing a nonlinear system. Compared with other balancers, the gyroscopic balancer has a couple of advantages, such as faster system response, lower mass ratio of balancer to bicycle and relatively larger moment. To demonstrate the attributes stated above, we designed and conducted experiments, including the balancing of unmoving bicycle, unmoving bicycle with external impacts, as well as the bicycle moving forward and turning. The experimental results shows that the bicycle can overcome jolts, uneven terrain and external disturbances. Furthermore, since the results of experiments are consistent with the ones of the simulation, it validates the derived bicycle dynamics model with the gyroscopic balancer and proves its robustness. However, the system’s ability to resist continuous disturbance is not strong enough because of the limitation on the tilt angle of the gyroscopic balancer. Hence, we modified the control strategy by using AFSMC despite the fact that the combination of FSMC and gyroscopic balancer performed well than others. From the simulations in chapter IV, it shows that the AFSMC has better performance at resisting continuous disturbances than FSMC does. Furthermore, the abilities to balance the unmoving bicycle or moving bicycle in any case are no less than FSMC. Thus, the AFSMC is employed to replace the FSMC. The designs of adaptive law and estimation law of AFSMC are based on the Lyapunov function to ensure the stability of the system.

致謝 i
摘要 ii
Abstract iii
圖目錄 vi
表目錄 viii
第1章 緒論 Introduction 1
第2章 文獻探討 Literature Review 3
2.1 自行車動力學模型 (Dynamics model of bicycle) 3
2.2 自動導引自行車系統 (Riderless bicycle system) 5
2.3 控制策略 (Control strategy) 9
第3章 材料與方法 Materials and Methods 11
3.1 自行車系統 (Bicycle system) 11
3.1.1 自行車平台 (Bicycle platform) 11
3.1.2 陀螺儀平衡器模組原理與設計 (Designs of gyroscopic balancer) 14
3.1.3 控制系統(Control system) 18
3.2 動力學模型 (Dynamics model) 23
3.3 控制策略 (Control strategy) 28
3.3.1 滑動模式控制策略 (Sliding mode control) 29
3.3.2 模糊滑動模式控制策略 (Fuzzy sliding mode control) 33
3.3.3 自適應模糊滑動模式控制策略 (Adaptive fuzzy sliding mode control) 40
第4章 結果與討論 Results and Discussion 46
4.1 模擬 (Simulations) 46
4.1.1 模糊滑動模式控制器 (Fuzzy sliding mode controller) 46
4.1.2 自適應模糊滑動模式控制器 (Adaptive fuzzy sliding mode controller) 52
4.2 實驗 (Experiments) 55
4.2.1 自行車原地靜止而能平衡 (Balancing the unmoving bicycle) 55
4.2.2 自行車無前進速度且受干擾而能平衡 (Balancing the umoving bicycle with external disturbances ) 58
4.2.3 自行車直行前進而能平衡 (Balancing the bicycle while moving forward) 60
4.2.4 自行車前進時任意轉動龍頭而能平衡 (Balancing the bicycle while moving and swinging the handlebar arbitrary) 63
4.2.5 自行車固定迴轉半徑繞圈轉彎而能平衡 (Balancing the bicycle while turning with the angle of handle bar is fixed at a certain degree) 64
第5章 結論 Conclusion 66
References 67


Åström, K. J., R. E. Klein and A. Lennartsson. 2005. "Bicycle dynamics and control." IEEE Control Systems Magazine 25(4): 26-47.Sharp, R. S. 1971. "The stability and control of motorcycles." Mechanical Engineering Science 13(5): 316-329.
Chen, M. S., C. H. Chen and F. Y. Yang. 2007. "An LTR-observer-based dynamic sliding mode control for chattering reduction." Automatica 43(6): 1111-1116.
Defoort, M. and T. Murakami. 2009. "Sliding-mode control scheme for an intelligent bicycle." IEEE Transactions on Industrial Electronics 56(9): 3357-3368.
Getz, N. H. and J. E. Marsden. 1995. "Control for an autonomous bicycle." IEEE International Conference on Robotics and Automation, Nagoya, Japan. pp. 1397-1402.
Hwang, C. L., H. M. Wu and C. L. Shih. 2003. “Fuzzy sliding-mode underactuated control for autonomous dynamic balance of an electrical bicycle.” IEEE Transations on Control Systems Technology 17(3): 658–670.
Limebeer, D. J. N. and R. S. Sharp. 2006. "Bicycles, motorcycles, and models: single-track vehicle modeling and control." IEEE Control Systems Magazine 26(5): 34-61.
Lam, P. Y. 2011. "Gyroscopic stabilization of a kid-size bicycle." IEEE International Conference on Cybernetics and Intelligent Systems, Qingdao, China. pp. 247-252.
Murayama, A. and M. Yamakita. 2007. "Development of autonomous bike robot with balancer." IEEE International Conference on Instrumentation, Control, Information Technology and System Integration, Takamatsu, Japan. pp. 1048-1052.
Tanaka, Y. and T. Murakami. 2004. "Self sustaining bicycle robot with steering controller." IEEE International Conference on Advanced Motion Control, Kawasaki, Japan. pp. 193-197.
Thanh, B. T. and M. Parnichkun. 2008. "Balancing control of bicyrobo by particle swarm optimization-based structure-specified mixed H2/H∞ control." International Journal of Advanced Robotic Systems 5(4): 395-402.
方玫文. 2012. 應用零力矩點追蹤法於自動導引自行車之平衡控制. 碩士論文. 台灣大學生物產業機電工程學系.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文