跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 17:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁立剛
研究生(外文):Li-Kang Weng
論文名稱:立體視覺與雷達感測器融合系統於車輛避障之應用
論文名稱(外文):Sensor Fusion of Stereo Vision and Radar Systems for Vehicle Collision Avoidance
指導教授:林達德林達德引用關係
指導教授(外文):Ta-Te Lin
口試委員:林聖泉連豊力
口試委員(外文):Tshen-Chan LinFeng-Li Lian
口試日期:2015-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:92
中文關鍵詞:主動式車輛安全立體視覺雷達感測器感測器融合障礙物偵測障礙物追蹤避障系統
外文關鍵詞:Active vehicle safetystereo visionradarsensor fusionobstacle detectionobstacle trackingcollision avoidance system
相關次數:
  • 被引用被引用:3
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  主動式車輛安全系統的開發在於提供使用者更完善的安全,宗旨為降低意外事故的發生機率,當系統發現有潛在危險的障礙物時,藉由圖形使用者介面 (graphical user interface, gui) 提醒使用者注意當前狀況,如果使用者沒有對系統的警示沒有反應的話則直接制動煞車系統反應,以避免意外事故的發生。本研究以立體視覺與雷達感測器建立一套中階感測器融合的車輛安全系統,立體視覺以兩顆攝影機組成,經由對應點匹配後可以獲得影像中的三維資訊,將深度資訊投射至上視圖進行障礙物偵測,可提供色彩與深度資訊,但深度資訊容易受外在因素影響;雷達感測器提供精確的距離和速度資訊,但無法辨識障礙物,為了獲得更完整的環境資訊,將兩種感測器進行感測器融合,以獲得更精確的資訊。兩種感測器的障礙物偵測完成後,依據感測器資訊的機率分布函數估算其可靠性,在障礙物偵測階段使用感測器融合方法結合感測器的資訊。障礙物追蹤使用卡爾曼濾波器,用於得知物體在時間序列中的相對關係並預測其運動模型。在行駛的過程中,撞擊預先警示系統會不間斷觀察是否有潛在的危險,若有障礙物可能會與車量進行碰撞,例如緊急煞車或側向突然出現,系統會提醒駕駛人注意當前狀況並判斷是否制動煞車系統防止與障礙物碰撞,同時啟動 A* 避障演算法進行路徑規劃,提供當前安全的路徑供車輛進行閃避。本研究的實驗場景為校園道路以及農場,經過實驗驗證,本系統能夠應用於校園道路的即時主動式車輛安全系統。

Active vehicle safety system is aimed to enhance the safety of driving and reduce the accidents. When the dangerous situation was detected, the system would warn the user by graphical user interface to pay attention. If the user failed to response, the brake system would swing into action for preventing an accident. In this study, an intermediate-level obstacle-detection-based sensor-fusion vehicle safety system was proposed using stereo vision rig and radar. Stereo vision was composed of two cameras with color and depth information. The depth information estimated by stereo vision algorithm was projected onto the top-view. Obstacles were filtered out using blob method and 3D geometric constraints. High accuracy range information such as position and speed was provided by radar; however, there was no color information from radar. Stereo vision and radar were fused at detection-based sensor fusion in order to acquire more realistic information. After obstacle detection, Kalman filter was implemented for obstacle tracking. The motion model of obstacles was estimated between the data sequences. The pre-collision warning system was processed continuously to detect the obstacles with potential danger. When the obstacle performed sudden braking maneuver or popped out from side…etc, the obstacle avoidance system would warn the user and was prepared to take brake in preventing collision and plan a safe path for user to follow. A* algorithm was implemented to plan a safer path for user as a reference. After experimental validation, the active vehicle safety system was applied to real-time environment surveillance system in the school street.

目 錄
摘 要 i
Abstract ii
目 錄 iii
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究目的 5
第二章 文獻探討 8
2.1 雷達感測器 8
2.2 立體視覺 10
2.2.1 攝影機校正 10
2.2.2 立體視覺理論 11
2.2.3 對應點匹配 12
2.2.4 深度資訊計算 13
2.2.5 障礙物偵測 14
2.3 感測器融合 17
2.4 避障系統 21
2.4.1 障礙物追蹤 21
2.4.2 撞擊預先警示系統 22
2.4.3 路徑規劃 23
第三章 材料與方法 25
3.1 系統架構 25
3.1.1 硬體架構 25
3.1.2 軟體架構 29
3.1.3 圖形使用者介面 32
3.2 立體視覺 33
3.2.1 攝影機校正 33
3.2.2 深度資訊計算 36
3.2.3 障礙物偵測 37
3.3 感測器座標系轉換 42
3.4 感測器融合 42
3.5 避障系統 44
3.5.1 障礙物追蹤 44
3.5.2 撞擊預先警示系統 49
3.5.3 路徑規劃 50
3.6 實驗規劃與方法 58
第四章 結果與討論 59
4.1 立體視覺 59
4.1.1 攝影機校正 59
4.1.2 像差影像 61
4.1.3 障礙物偵測 62
4.1.4 距離量測誤差 65
4.2 感測器融合 67
4.2.1 感測器可靠性估算 67
4.2.2 靜止障礙物距離量測實驗 74
4.3 障礙物偵測 76
4.3.1 前方障礙物逼近 77
4.3.2 障礙物橫向移動 78
4.4 避障系統 80
4.4.1 障礙物追蹤 80
4.4.2 撞擊預先警示系統 92
4.4.3 路徑規劃 92
第五章 結論與建議 94
5.1 結論 94
5.2 建議 96
參考文獻 97


莊凱強。2013。基於立體視覺之即時障礙物追蹤與避障方法。碩士論文。臺北:國立臺灣大學生物產業機電工程學研究所。
賴宗誠。2012。應用多組雙眼攝影機系統進行車前三維環境模型重建。碩士論文。臺北:國立臺灣大學生物產業機電工程學研究所。
Alessandretti, G., A. Broggi and P. Cerri. 2007. Vehicle and guard rail detection using radar and vision data fusion. IEEE Transactions on Intelligent Transportation Systems. 8(1), 95-105.
Arulampalam, M. S., S. Maskell, N. Gordon and T. Clapp. 2002. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing. 50(2), 174-188.
Aufrere, R., R. Chapuis and F. Chausse. 2000, 2000. A fast and robust vision based road following algorithm. Paper presented at the Proceedings of the 2000 IEEE Intelligent Vehicles Symposium (IV).
Baig, Q., O. Aycard, T. D. Vu and T. Fraichard. 2011. Fusion between laser and stereo vision data for moving objects tracking in intersection like scenario. Paper presented at the Intelligent Vehicles Symposium (IV), 2011 IEEE.
Bernini, N., M. Bertozzi, L. Castangia, M. Patander and M. Sabbatelli. 2014. Real-time obstacle detection using stereo vision for autonomous ground vehicles: A survey. Paper presented at the Intelligent Transportation Systems (ITSC), 2014 IEEE 17th International Conference on.
Borenstein, J. and Y. Koren. 1991. The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Transactions on Robotics and Automation. 7(3), 278-288.
Bouguet, J.-Y. 2004. Camera calibration toolbox for matlab.
Brown, D. C. 1966. Decentering distortion of lenses. Photometric Engineering. 32(3), 444-462.
Brown, D. C. 1971. Close-range camera calibration. Photogrammetric Engineering. 37, 855-866.
Collins, T. 2004. Graph cut matching in computer vision. University of Edinburgh
Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numerische mathematik. 1(1), 269-271.
Gong, J., L. Li and W. Chen. 1998. Fast recursive algorithms for two-dimensional thresholding. Pattern Recognition. 31(3), 295-300.
Hackett, J. K. and M. Shah. 1990, 13-18 May 1990. Multi-sensor fusion: a perspective. Paper presented at the Proceedings of the 1990 IEEE International Conference on Robotics and Automation.
Hart, P. E., N. J. Nilsson and B. Raphael. 1968. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics. 4(2), 100-107.
Hirschmüller, H. 2008. Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Transactions on Pattern Analysis and Machine Intelligence. 30(2), 328-341.
Hu, Z. and K. Uchimura. 2005. UV-disparity: an efficient algorithm for stereovision based scene analysis. Paper presented at the Intelligent Vehicles Symposium, 2005. Proceedings. IEEE.
Kalman, R. E. 1960. A new approach to linear filtering and prediction problems. Journal of Fluids Engineering. 82(1), 35-45.
Labayrade, R., C. Royere, D. Gruyer and D. Aubert. 2005. Cooperative fusion for multi-obstacles detection with use of stereovision and laser scanner. Autonomous Robots. 19(2), 117-140.
Laneurit, J., C. Blanc, R. Chapuis and L. Trassoudaine. 2003, 9-11 June 2003. Multisensorial data fusion for global vehicle and obstacles absolute positioning. Paper presented at the Proceedings of 2003 IEEE Intelligent Vehicles Symposium.
Lin, K., C. Chang, A. Dopfer and C. Wang. 2012. Mapping and Localization in 3D Environments Using a 2D Laser Scanner and a Stereo Camera. Journal of Information Science and Engineering. 28(1), 131-144.
Liu, D., M.-L. Shyu, Q. Zhu and S.-C. Chen. 2011. Moving object detection under object occlusion situations in video sequences. Paper presented at the 2011 IEEE International Symposium on Multimedia (ISM).
Mahmood, F., S. Haider and F. Kunwar. 2013. Investigating the performance of Correspondence Algorithms in Vision based Driver-assistance in Indoor Environment. arXiv preprint arXiv:1301.0435
Pocol, C., S. Nedevschi and M.-M. Meinecke. 2008. Obstacle detection based on dense stereovision for urban ACC systems. Paper presented at the Proceedings of 5th International Workshop on Intelligent Transportation (WIT 2008).
Rabe, C., U. Franke and S. Gehrig. 2007, 13-15 June 2007. Fast detection of moving objects in complex scenarios. Paper presented at the Intelligent Vehicles Symposium, 2007 IEEE.
Scharstein, D. and R. Szeliski. 2002. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International journal of computer vision. 47(1-3), 7-42.
Sun, Z., G. Bebis and R. Miller. 2006. On-road vehicle detection: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence. 28(5), 694-711.
Sural, S., Q. Gang and S. Pramanik. 2002, 2002. Segmentation and histogram generation using the HSV color space for image retrieval. Paper presented at the Image Processing. 2002. Proceedings. 2002 International Conference on.
Wang, T., N. Zheng, J. Xin and Z. Ma. 2011. Integrating millimeter wave radar with a monocular vision sensor for on-road obstacle detection applications. Sensors. 11(9), 8992-9008.
Wu, S., S. Decker, P. Chang, T. Camus and J. Elefath. 2009. Collision Sensing by Stereo Vision and Radar Sensor Fusion. IEEE Transactions on Intelligent Transportation Systems. 10(4), 606-614.
Yilmaz, A., O. Javed and M. Shah. 2006. Object tracking: A survey. Acm computing surveys (CSUR). 38(4), 13.
Zhengyou, Z. 2000. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence. 22(11), 1330-1334.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top