跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 16:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張家瑋
研究生(外文):Chia-Wei Chang
論文名稱:輔助行走下肢外骨骼機器人之設計
論文名稱(外文):Design of a Lower Limb Exoskeleton for Walking Aids
指導教授:林達德林達德引用關係
口試委員:顏炳郎郭彥甫
口試日期:2015-07-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:116
中文關鍵詞:外骨骼機器人機器人裝甲外骨骼動力輔具步態分析
外文關鍵詞:active orthosisexoskeletonwearable robotlower limb exoskeletongait analysis
相關次數:
  • 被引用被引用:3
  • 點閱點閱:418
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
下肢外骨骼機器人是一種動力輔具系統,可穿戴在人體上來提升使用者的力量,目前研究主流分成軍事和醫療兩方面,軍事用途可增加士兵的武器攜帶量,並幫助士兵移動來減少勞累,或提供於軍火工廠維修裝備與搬運器材的工人使用,避免職業傷害發生;醫療用途為協助患者復健,藉由模擬走路步態的過程,增加病患的復健意願和練習次數。本研究設計下肢外骨骼機器人系統(BimeExo),主要應用於模擬人類步態來輔助使用者行走,裝置上共有四顆馬達安裝在兩足的髖關節和膝關節處,踝關節以彈性止滑墊組成,並設計多重安全機制以避免發生危險。為了模擬人類走路步態,設計了人體髖關節與膝關節的角度量測系統,藉由量測出來的步態角度資料,建立出使用者的參數化步態模型,並依此分析不同人之間的差異。此外參數化步態模型在應用於下肢外骨骼機器人時,即可依照使用者身體參數的差異而調整成不同的步態動作。BimeExo系統走路步行速度約0.05 m/s,上下樓梯的速度約20 s/step。為因應一般居家復健使用,設計五種常用動作,站立、坐下、走路和上下樓梯,使用者僅需要輸入身高資訊,利用拐杖遙控器和安裝在身體上的角度感測器作為有限狀態機的轉換條件,進而切換狀態以防止錯誤步態發生。

Lower limb exoskeleton is a powered orthosis can be worn by human to enhance users'' ability. Currently divided into military and medical aspects. Military applications help soldiers move with more weapons and reduce fatigue, or help workers transport equipment in the factory to avoid occupational injuries. In the medical purposes, it can assist the patients to rehabilitate by walking simulation, and increase the number of exercise. The study designed a lower limb exoskeleton robotic system (BimeExo), mainly used in simulating gait to assist human walking. The system with four motors mounted on the both hip and knee. For supporting the human and robot, it has two elastic pads on ankle. In safety issue, it composed of multiple security mechanisms to avoid the danger. In order to simulate human gait, the study build a human measurement system to get the angle at hip and knee. By using the gait data to create parametric gait model and researchers can analyze the different by this model. According to different users can be adjusted to different body parameters for gait motion, then put the parameters into the robot platform to get the hip and knee angle. The walking speed of the BimeExo system is about 0.05 m/s, and the speed of the up and down the stairs is about 20 s/step. The system designed five common motion, standing, sitting, walking up and down stairs for general normal use at home. The user only needs to input the height and weight into the system, and use special crutch controller and angle sensors on the body as finite state machine transition conditions. Then user can control the robot and prevent danger.

目 錄
摘 要 i
Abstract ii
目 錄 iii
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1. 前言 1
1.2. 研究目的 3
第二章 文獻探討 6
2.1. 下肢外骨骼機器人與動力輔具 7
2.2. 初期發展與應用 10
2.3. 致動器 13
2.3.1. 液壓致動器 13
2.3.2. 氣壓致動器 14
2.3.3. 電動馬達 15
2.3.4. 串接式彈性致動器 18
2.4. 控制模式 19
2.4.1. 機器人訊號 20
2.4.2. 人體訊號 21
2.4.3. 人機互動 24
2.5. 模擬人體與步態分析 26
2.5.1. 機器人擬人化 26
2.5.2. 步態分析 27
2.5.3. 參數化步態模型 28
2.5.4. 有限狀態機 29
第三章 材料與方法 30
3.1. 建立參數化步態模型 31
3.1.1. 步態角度量測系統 31
3.1.2. 步態切割與時間正規化 36
3.1.3. 步態模型建立 39
3.1.4. 參數化動作模型建立 40
3.2. 下肢動力輔具硬體BimeEXO 44
3.2.1. 電子無刷馬達 45
3.2.2. 諧和式齒輪箱 47
3.2.3. 馬達扭力計算 48
3.2.4. 馬達控制器 51
3.2.5. 馬達座模組與機構設計 53
3.2.6. 保護機制 56
3.2.7. 馬達初始位置校正 60
3.2.8. 硬體關節活動角度與自由度 64
3.2.9. 有限狀態機 66
3.3. 實驗規劃與方法 69
第四章 結果與討論 70
4.1. 參數化模型 70
4.1.1. 建立步態模型 70
4.1.2. 人體關節極限設定 75
4.1.3. 走路步態參數化 80
4.1.4. 樓梯步態參數化 84
4.1.5. 參數化模型調整機制 92
4.2. 動力輔具 95
4.2.1. 馬達扭力驗證 95
4.2.2. 穿戴測試 98
4.2.3. 機體改良 100
4.2.4. 電流輸出 103
第五章 結論與建議 106
5.1. 結論 106
5.2. 建議 107
參考文獻 109


李恆儒、徐瑋勵、楊秉祥。2011。生物力學-臨床與研究的應用。初版,20。台灣:愛思唯爾。
Aida, T., H. Nozaki, and H. Kobayashi. 2009. Development of muscle suit and application to factory laborers. ICMA International Conference on Mechatronics and Automation.1027-1032.
Arevalo, J. C., D. Sanz-Merodio, M. Cestari, and E. Garcia. 2012. Parameterized inverted and double pendulum model for controlling lower-limb active orthosis. IEEE International Conference on Robotics and Biomimetics (ROBIO).1899-1905.
Contreras-Vidal, J. L., and R. G. Grossman. 2013. NeuroRex: A clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton. 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).1579-1582.
Contreras-Vidal, J. L., A. Presacco, H. Agashe, and A. Paek. 2012. Restoration of Whole Body Movement: Toward a Noninvasive Brain-Machine Interface System. Pulse, IEEE. 3:34-37.
Dollar, A. M., and H. Herr. 2008. Design of a quasi-passive knee exoskeleton to assist running. IEEE/RSJ International Conference on Intelligent Robots and Systems.747-754.
Dollar, A. M., and H. Herr. 2008. Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art. IEEE Transactions on Robotics. 24:144-158.
Farris, R. J., H. A. Quintero, and M. Goldfarb. 2011. Preliminary Evaluation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 19:652-659.
Ferrati, F., R. Bortoletto, E. Menegatti, and E. Pagello. 2013. Socio-economic impact of medical lower-limb Exoskeletons. IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO).19-26.
Fleischer, C., and G. Hommel. 2008. A Human--Exoskeleton Interface Utilizing Electromyography. IEEE Transactions on Robotics. 24:872-882.
Frigo, C., and P. Crenna. 2009. Multichannel SEMG in clinical gait analysis: A review and state-of-the-art. Clinical Biomechanics. 24:236-245.
Garcia, E., M. Cestari, and D. Sanz-Merodio. 2014. Wearable exoskeletons for the physical treatment of children with quadriparesis. 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids).425-430.
George, T., G. K. Shalu, and K. S. Sivanandan. 2011. Sensing, processing and application of EMG signals for HAL (Hybrid Assistive Limb). International Conference on Sustainable Energy and Intelligent Systems (SEISCON).749-753.
Ghan, J., R. Steger, and H. Kazerooni. 2006. Control and system identification for the Berkeley lower extremity exoskeleton (BLEEX). Advanced Robotics. 20:989-1014.
Hayashi, T., H. Kawamoto, and Y. Sankai. 2005. Control method of robot suit HAL working as operator''s muscle using biological and dynamical information. IEEE/RSJ International Conference on Intelligent Robots and Systems.3063-3068.
Hui, Y., W. Dong-hai, Y. Can-Jun, and L. Kok-Meng. 2010. A walking monitoring shoe system for simultaneous plantar-force measurement and gait-phase detection. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).207-212.
Huo, W., S. Mohammed, J. C. Moreno, and Y. Amirat. 2014. Lower Limb Wearable Robots for Assistance and Rehabilitation: A State of the Art. IEEE Systems Journal. PP:1-14.
Hussein, S., H. Schmidt, S. Hesse, and J. Kruger. 2009. Effect of different training modes on ground reaction forces during robot assisted floor walking and stair climbing. IEEE International Conference on Rehabilitation Robotics.845-850.
Hyon, S., J. Morimoto, T. Matsubara, T. Noda, and M. Kawato. 2011. XoR: Hybrid drive exoskeleton robot that can balance. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).3975-3981.
Ikeuchi, Y., J. Ashihara, Y. Hiki, H. Kudoh, and T. Noda. 2009. Walking assist device with bodyweight support system. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).4073-4079.
Ishii, M., K. Yamamoto, and K. Hyodo. 2005. Stand-AloneWearable Power Assist Suit.
Joonbum, B., K. Kyoungchul, N. Byl, and M. Tomizuka. 2009. A mobile gait monitoring system for gait analysis. IEEE International Conference on Rehabilitation Robotics (ICORR) 73-79.
Karlin, S. 2011. Raiding Iron Man''s closet [Geek Life]. IEEE Spectrum. 48:25-25.
Kawabata, T., H. Satoh, and Y. Sankai. 2009. Working posture control of Robot Suit HAL for reducing structural stress. IEEE International Conference on Robotics and Biomimetics (ROBIO).2013-2018.
Kawamoto, H., S. Kanbe, and Y. Sankai. 2003. Power assist method for HAL-3 estimating operator''s intention based on motion information. The 12th IEEE International Workshop on Robot and Human Interactive Communication.67-72.
Kawamoto, H., L. Suwoong, S. Kanbe, and Y. Sankai. 2003. Power assist method for HAL-3 using EMG-based feedback controller. IEEE International Conference on Systems, Man and Cybernetics. 2:1648-1653 vol.1642.
Kazerooni, H. 1990. Human-robot interaction via the transfer of power and information signals. IEEE Transactions on Biomedical Engineering. 20:450-463.
Kitatani, R., K. Ohata, H. Takahashi, S. Shibuta, Y. Hashiguchi, and N. Yamakami. 2014. Reduction in Energy Expenditure During Walking Using an Automated Stride Assistance Device in Healthy Young Adults. Archives of Physical Medicine and Rehabilitation.
Kobayashi, H., and H. Nozaki. 2009. Development of anteversion posture support system. IEEE International Conference on Robotics and Biomimetics.682-686.
Kyoungchul, K., and J. Doyoung. 2006. Design and control of an exoskeleton for the elderly and patients. IEEE/ASME Transactions on Mechatronics. 11:428-432.
Kyoungchul, K., and M. Tomizuka. 2009. A Gait Monitoring System Based on Air Pressure Sensors Embedded in a Shoe. IEEE/ASME Transactions on Mechatronics. 14:358-370.
Lee, S., and Y. Sankai. 2002. Power assist control for walking aid with HAL-3 based on EMG and impedance adjustment around knee joint. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2:1499-1504 vol.1492.
Moreno, J. C., F. J. Brunetti, and J. L. Pons. 2004. An autonomous control and monitoring system for lower limb orthosis: the gait project case. 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1:2125-2128.
Neuhaus, P. D., J. H. Noorden, T. J. Craig, T. Torres, J. Kirschbaum, and J. E. Pratt. 2011. Design and evaluation of Mina: A robotic orthosis for paraplegics. IEEE International Conference on Rehabilitation Robotics (ICORR).1-8.
Pratt, J. E., B. T. Krupp, C. J. Morse, and S. H. Collins. 2004. The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. IEEE International Conference on Robotics and Automation. 3:2430-2435.
Razian, M. A., and M. G. Pepper. 2003. Design, development, and characteristics of an in-shoe triaxial pressure measurement transducer utilizing a single element of piezoelectric copolymer film. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 11:288-293.
REX. 2015. Rexbionics. New Zealand. http://www.rexbionics.com/. 2015.8.11.
Rochelle, R., B. Christopher, R. Roger, N. Peter, and D. Myron. 2013. X1: A Robotic Exoskeleton for In-Space Countermeasures and Dynamometry. AIAA SPACE 2013 Conference and Exposition.1-8.
Sankai, Y. 2006. Leading Edge of Cybernics: Robot Suit HAL. SICE-ICASE, 2006. International Joint Conference.P-1-P-2.
Sanz-Merodio, D., M. Cestari, J. C. Arevalo, and E. Garcia. 2012. A lower-limb exoskeleton for gait assistance in quadriplegia. IEEE International Conference on Robotics and Biomimetics (ROBIO).122-127.
Satoh, H., T. Kawabata, and Y. Sankai. 2009. Bathing care assistance with robot suit HAL. 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).498-503.
Strausser, K. A., and H. Kazerooni. 2011. The development and testing of a human machine interface for a mobile medical exoskeleton. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).4911-4916.
Suzuki, K., Y. Kawamura, T. Hayashi, T. Sakurai, Y. Hasegawa, and Y. Sankai. 2005. Intention-based walking support for paraplegia patient. IEEE International Conference on Systems, Man and Cybernetics. 3:2707-2713 Vol. 2703.
Talaty, M., A. Esquenazi, and J. E. Briceno. 2013. Differentiating ability in users of the ReWalk powered exoskeleton: An analysis of walking kinematics. IEEE International Conference on Rehabilitation Robotics (ICORR).1-5.
Toyama, S., and G. Yamamoto. 2009. Development of Wearable-Agri-Robot mechanism for agricultural work. IEEE/RSJ International Conference on Intelligent Robots and Systems.5801-5806.
Tsukahara, A., Y. Hasegawa, K. Eguchi, and Y. Sankai. 2015. Restoration of Gait for Spinal Cord Injury Patients Using HAL With Intention Estimator for Preferable Swing Speed. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 23:308-318.
Tsukahara, A., Y. Hasegawa, and Y. Sankai. 2011. Gait support for complete spinal cord injury patient by synchronized leg-swing with HAL. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).1737-1742.
Vukobratović, M. 2008. Active Exoskeletal Systems and Beginning of the Developement of Humanoid Robotics. Monograph of Academy of Nonlinear Sciences. 2:329-348.
Walsh, C. J., D. Paluska, K. Pasch, W. Grand, A. Valiente, and H. Herr. 2006. Development of a lightweight, underactuated exoskeleton for load-carrying augmentation. IEEE International Conference on Robotics and Automation.3485-3491.
Walsh, C. J., K. Pasch, and H. Herr. 2006. An autonomous, underactuated exoskeleton for load-carrying augmentation. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.1410-1415.
Wang, S., L. Wang, C. Meijneke, E. van Asseldonk, T. Hoellinger, G. Cheron, . . . H. van der Kooij. 2015. Design and Control of the MINDWALKER Exoskeleton. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 23:277-286.
Yamamoto, K. 2005. Wearable Power-Assisting Suit.
Zoss, A., H. Kazerooni, and A. Chu. 2005. On the mechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX). IEEE/RSJ International Conference on Intelligent Robots and Systems.3465-3472.
Zoss, A. B., H. Kazerooni, and A. Chu. 2006. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics. 11:128-138.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top