跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/29 22:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃長漢
研究生(外文):Chang-Han Huang
論文名稱:疊代式正子掃描影像重建使用邊緣保持事前資訊
論文名稱(外文):Iterative reconstruction with an edge-preserving prior forPET
指導教授:周呈霙周呈霙引用關係
指導教授(外文):Cheng-Ying Chou
口試委員:許靖涵蕭穎聰
口試委員(外文):Ching-Han HsuIng-Tsung Hsiao
口試日期:2015-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:58
中文關鍵詞:正子斷層掃描影像重建影像對位
外文關鍵詞:PETimage reconstructionimage registration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
正子斷層掃描是一種常運用在臨床診斷的核子醫學影像系統,能提供許多醫學影像的資訊來協助醫生們診斷腫瘤、癌症或是腦部疾病,但是正子影像比較少具有結構性的影像資訊,而且相較於其他醫學影像,正子影像的空間解析度較低。如果能夠有效的提高影像的品質,將能提供更多有效的影像資訊來協助醫生診斷。
在本研究中,我們使用OpenGATE軟體來模擬正子斷層掃描系統,並且比較不同正子斷層影像重建方法的效果。在重建的過程中,我們會使用Median root prior 方法計算影像資訊,並且運用全變異最小化方法(Total variation minimization algorithm)搭配Proximal Splitting方法做影像重建,希望藉由此方法能夠提高正子斷層影像的影像品質及解析度。
除了改善正子斷層掃描影像之外,我們也使用了來自台大醫院的阿茲海默症患者的影像,阿茲海默症是一種不可治癒的腦部疾病,阿茲海默症的患者會隨著時間,漸漸的失去記憶及思考的功能,雖然不可以治癒,但是提早治療能夠降低阿茲海默症所造成的傷害,因此我們設計一個多模式影像平台能將正子斷層掃描影像及核磁共振影像對位,並設計可以讓醫生圈出特別的區域,透過這樣的方式,醫生能夠有更多客觀的影像資訊來診斷疾病。我們希望這些方法幫助阿茲海默症的患者能夠即早治療,降低阿茲海默症所帶來的傷害。


Positron emission tomography (PET) is a nuclear medicine technique that can help the doctor to diagnose the disease such as tumor, cancer, or brain disease. However, there are still some disadvantages in PET system. For example, comparing with the different medical imaging modalities, the spatial resolution of PET is relatively poor. If we can improve the image quality, PET can provide more image information for doctors diagnosing disease. In this work, we applied the OpenGATE package to simulate the PET system and compared the efficacy of different reconstruction algorithms. We took advantages of the edge-preserving prior for PET image reconstruction to improve PET image quality. In this work we also employed the medical image data from National Taiwan University Hospital. We developed a multi-modality imaging platform to register functional and anatomical images. This allowed for a quantitative and objective diagnosis of Alzheimer’s disease (AD). AD is an irreversible, progressive brain disease that slowly destroys memory and thinking skills. Early treatment could slow down the damage caused by AD. The knowledge of the anatomical features in MR and CT images can be exploited to better evaluate the tracer dynamics in PET images by first registering anatomical information from MRI with CT images and then with functional information contained in PET. With all of methods, an early diagnosis of may be anticipated.

致謝 i
摘要 ii
Abstract iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
1.1 Background 1
1.2 Purpose 3
1.3 Frameworks 4
CHAPTER 2 5
2.1 Medical imaging 5
2.1.1 Positron Emission Tomography 5
2.1.2 Anatomical medical imaging 6
2.2 Simulation and Reconstruction Algorithms 8
2.2.1 A Simulation Tool for PET: GATE 8
2.2.2 Reconstruction Algorithms for PET image 9
2.2.3 Ray-tracing algorithm 10
2.2.4 Monte Carlo Simulation 11
2.2.5 Total Variation Minimization Algorithm 12
2.2.6 Proximal Splitting Method 13
2.3 Alzheimer’s disease 14
2.4 Registration Algorithms 15
CHAPETR 3 17
3.1 Simulation Flowchart 17
3.2 Experimental data 19
3.2.1 Simulated data for PET reconstruction 19
3.2.2 Simulated data for registration 20
3.3 Research Methods 21
3.3.1 Reconstruction Methods 21
3.3.1.1 System Response Matrix 21
3.3.1.2 Ray-tracing Simulation 22
3.3.1.3 Total Variation Algorithm 22
3.3.1.4 Median Root Prior 23
3.3.1.5 Splitting-based fast iterative shrinkage-thresholding algorithm with prior 24
3.3.2 Registration method 26
CHAPTER 4 28
4.1 Simulation Phantom and Source for PET Reconstruction 28
4.2 Reconstruction algorithms comparison 29
4.2.1 The parameters in EM-TV and PLS-TV 30
4.2.2 The performance of EM/EM-TV 33
4.2.3 The performance of EM-TV/PLS-TV algorithm 38
4.2.4 The performance of PLS-TV/PLS-TV-MRP algorithm 43
4.3 Registration Results 48
CHAPTER 5 52
5.1 Research Summary 52
5.2 Future Work 53
BIBLIOGRAPHY 54


Allison, J. 2003. GEANT4—a simulation toolkit. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 506(3): 250-303.
Alenius, S., & Ruotsalainen, U. 1997. Bayesian image reconstruction for emission tomography based on median root prior. European Journal of Nuclear Medicine. 24(3): 258-265.
Alenius, S., & Ruotsalainen, U. 2002. Generalization of median root prior reconstruction. Medical Imaging, IEEE Transactions on. 21(11): 1413-1420.
Alzheimer''s Association, A. s. 2012. 2012 Alzheimer''s disease facts and figures. Alzheimer''s & dementia.8(2): 131-168.
Alzheimer''s Association, A. s. 2013. 2013 Alzheimer''s disease facts and figures. Alzheimer''s & Dementia. 9(2): 208-245.
Beck, A., & Teboulle, M. 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences. 2(1): 183-202.
Bertilsson, H. 2010. Monte Carlo Simulations of a Clinical PET system using the GATE Software.Master thesis. Sweden LundUniversity, Department of Medical Radiation Physics.
Biersack, J. P., & Haggmark, L. 1980. A Monte Carlo computer program for the transport of energetic ions in amorphous targets. Nuclear Instruments and Methods. 174(1): 257-269.
Boyd, S., & Vandenberghe, L. 2004. Convex optimization.Cambridge university press.
Canny, J. 1986. A computational approach to edge detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on(6):679-698.
Cheng-Liao, J., & Qi, J. 2011. PET image reconstruction with anatomical edge guided level set prior. Physics in Medicine and Biology. 56(21): 6899.
Combettes, P. L., & Pesquet, J.-C. 2004. Image restoration subject to a total variation constraint. Image Processing, IEEE Transactions on. 13(9):1213-1222.
Combettes, P. L., & Pesquet, J.-C. 2011. Proximal splitting methods in signal processing Fixed-point algorithms for inverse problems in science and engineering.185-212.
Combettes, P. L., & Wajs, V. R. 2005. Signal recovery by proximal forward-backward splitting. Multiscale Modeling & Simulation. 4(4): 1168-1200.
Danielsson, P.-E. 1980. Euclidean distance mapping. Computer Graphics and image processing. 14(3): 227-248.
De Pierro, A. R. 1994. A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography. IEEE Transactions on Medical Imaging. 14(1): 132-137.
Dong, Y. 2009. A high-sensitivity dual-head panel small-animal positron emission
tomography. Illinois Institute of Technology.
Gang, L., Chutatape, O., & Krishnan, S. M. 2002. Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter. Biomedical Engineering, IEEE Transactions on, 49(2): 168-172.
Gindi, G., Lee, M., & Rangarajan, A. 1993. Bayesian reconstruction of functional images using anatomical information as priors. Medical Imaging, IEEE Transactions on, 12(4): 670-680.
Gindi, G., Lee, M., Rangarajan, A., & Zubal, I. G. 1991. Bayesian reconstruction of functional images using registered anatomical images as priors. In A. F. Colchester & D. Hawkes (Eds.), Information Processing in Medical Imaging.121-131.
Gindi, G., Lee, M., Rangarajan, A., & Zubal, I. G. 1993. Bayesian reconstruction of functional images using anatomical information as priors. Medical Imaging, IEEE Transactions on, 12(4): 670-680.
Hara, T., Truelove, J., Weissleder, R., Tawakol, A., & Jaffer, F. A. 2013. Noninvasive Imaging of Inflammation Using 18F-FDG PET/CT Allows in vivo Assessment of the Biological Age of Deep Venous Thrombosis. Circulation, 128(22): A12087.
Hsiao, I.-T., Rangarajan, A., & Gindi, G. 2003. A new convex edge-preserving median prior with applications to tomography. Medical Imaging, IEEE Transactions on. 22(5): 580-585.
Hsieh, J. 2009. Computed tomography: principles, design, artifacts, and recent advances. Bellingham,WA: SPIE.
Jan, S., et al. 2004. GATE: a simulation toolkit for PET and SPECT. Physics in Medicine and Biology. 49(19): 4543.
Kao, C.-M., Xie, Q., Dong, Y., Wan, L., & Chen, C.-T. 2009. A high-sensitivity small-animal PET scanner: development and initial performance measurements. Nuclear Science, IEEE Transactions on, 56(5): 2678-2688.
Kiebel, S. J., Ashburner, J., Poline, J.-B., & Friston, K. J. 1997. MRI and PET coregistration—a cross validation of statistical parametric mapping and automated image registration. NeuroImage. 5(4): 271-279.
Klunk, W. E., et al. 2004. Imaging brain amyloid in Alzheimer''s disease with Pittsburgh Compound‐B. Annals of neurology. 55(3): 306-319.
LaRoque, S. J., Sidky, E. Y., & Pan, X. 2008. Accurate image reconstruction from few-view and limited-angle data in diffraction tomography. JOSA A. 25(7): 1772-1782.
Lau, C.-M., Adali, T., & Wang, Y. 1996. Coregistration of PET/MR brain images by multi-feature correlation matching. Biomedical Engineering Conference.301-304
Lee, Y. S., Kim, J. S., Kim, J. Y., Kim, B. I., Lim, S. M., & Kim, H.-J. 2015. Spatial Resolution and Image Qualities of Zr-89 on Siemens Biograph TruePoint PET/CT. Cancer Biotherapy and Radiopharmaceuticals. 30(1): 27-32.
Levitan, E., & Herman, G. T. 1987. A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography. Medical Imaging, IEEE Transactions on, 6(3): 185-192.
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. 1984. Clinical diagnosis of Alzheimer''s disease Report of the NINCDS‐ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer''s Disease. Neurology. 34(7): 939-939.
Neri, D., Szyperski, T., Otting, G., Senn, H., & Wuethrich, K. 1989. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional carbon-13 labeling. Biochemistry. 28(19): 7510-7516.
Prekeges, J. 2012. Nuclear medicine instrumentation. Jones & Bartlett Publishers.
Pruim, J., Willemsen, A., Molenaar, W. M., Van Waarde, A., Paans, A., Heesters, M., . . . Vaalburg, W. 1995. Brain tumors: L-[1-C-11] tyrosine PET for visualization and quantification of protein synthesis rate. Radiology.197(1): 221-226.
Raeside, D. 1976. Monte Carlo principles and applications. Physics in medicine and biology.
Ramani, S., & Fessler, J. 2012. A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction. Medical Imaging, IEEE Transactions on, 31(3): 677-688.
Sawatzky, A., Brune, C., Wübbeling, F., Kosters, T., Schäfers, K., & Burger, M. 2008. Accurate EM-TV algorithm in PET with low SNR. Nuclear Science Symposium Conference.5133-5137.
Siddon, R. L. 1985. Fast calculation of the exact radiological path for a three‐dimensional CT array. Medical physics. 12(2): 252-255.
Xu, J. 2014. Modeling and Development of Iterative Reconstruction Algorithms in Emerging X-ray Imaging Technologies. Wahington University open scholarship.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top