跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 03:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳薪喨
研究生(外文):Hsing-Liang Chen
論文名稱:水稻兩重組自交系族群之遺傳重組分析
論文名稱(外文):Genetic Recombination Analysis of Two Recombinant Inbred Lines Populations in Rice
指導教授:林順福
口試委員:葉茂生盧煌勝羅正宗
口試日期:2015-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:76
中文關鍵詞:重組自交系水稻遺傳重組分子標誌輔助選種比較圖譜連鎖失衡
外文關鍵詞:recombinant inbred linericegenetic recombinationmarker-assisted selectioncomparative maplinkage disequilibrium
相關次數:
  • 被引用被引用:1
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用秈稻品種台中秈 10 號(TCS10)與稉稻品種越光(KH)雜交所繁殖之F2後代並以修飾單粒後裔法(modified single seed descendant, modified SSD)培育共有 121 個的重組自交系(recombinant inbred line, RIL)的族群;另一族群使用稉稻品
種越光(KH)與稉稻品種台農 67 號(TNG67)以同樣方法培育 146 個重組自交系的族群,並以 SSR 分子標誌建立兩族群之連鎖圖譜,並與現有物理圖譜(日本晴)比對。本研究結果顯示 TCS10 × KH 族群在連鎖群順序上具有較多錯位、轉置現象,可能與其染色體組成有關,且發現秈稻台中秈 10 號的遺傳貢獻度大於稉稻越光,而同為稉稻之台農 67 號之貢獻度亦大於越光。且發現 TCS10 × KH 族群相較於 KH ×TNG67 族群有更明顯之偏差分離現象,且偏差傾向台中秈 10 號,而兩者間在染色體發生偏差分離的位置相近,顯示偏差分離並非隨機發生。KH × TNG67 族群在重組事件或是雙重互換事件之發生率普遍較 TCS10 × KH 族群高。TCS10 × KH 族群連鎖失衡的衰退也較 KH × TNG67 族群慢,並經由效應衰退距離顯示兩族群所使用之分子標誌數量已足夠,但應盡可能平均分散。綜合以上結果顯示秈稻與稉稻雜交後代較稉型稻間雜交後代需有投入較多的個體數及較多的自交世代,以分別提高其重組機會及基因型之固定。本研究結果未來可供水稻雜交育種選拔之參考。

In this study comparative maps of rice were constructed with a reference physical map (Nippobare) using SSR DNA markers and two recombinant inbred lines (RILs) populations, which were generated by a modified Single Seed Descendent (SSD) method. One population including 121 RILs was generated from an inter-subspecific cross between cultivars Taichung Sen No.10 (TCS10) and Koshihikari (KH). While the other population including 146 RILs was generated from an intra-subspecific cross
between cultivar Koshihikari and Tai Nung No.67 (TNG67) with the same method.More misposition and conversion events were found in the linkage groups of the population
TCS10 × KH. Besides, the genetic contribution of indica variety TCS10 is larger than that of japonica variety KH in the populations TCS10 × KH, and japonica TNG67 also has larger genetic contribution than KH. In addition, TCS10 × KH has more obvious segregation distortion (SD) were observed in the population TCS10 × KH than in the population KH × TNG67. There were several SD events at the corresponding positions on most chromosomes of the two populations, suggesting that SD events were not taken place in random. The rates of recombination event or double crossing over event are higher in the population KH × TNG67. Also, linkage disequilibrium (LD) decay was slower in the population TCS10 × KH than KH × TNG67. According to LD decay data, the amount of SSR molecular markers were sufficient in both populations; these markers were not sufficiently distributed evenly. To sum up, more projenies and selfing generations in a population developed from a cross between indica and japonica varieties. The results of this study could provide informations for rice breeding.

口試委員會審定書…………………………………………..………..………..………..i
誌謝………………………………………………..………..………..………………….ii
中文摘要…………………………………………………..………..……..……………iii
英文摘要……………………………………………….………………..………..…….iv
目錄……….…………………………………………….…………..………..………….v表目錄……………………………………………….…………..………..……………vii圖目錄…...…………………………………………….……………..……..……..viii
附錄目錄...…………………………………………….……………..……..……..ix
一、前言:……………………………………………………….…………………….. 1
二、前人研究:……………………………………………….……………………….. 3
三、材料與方法……………………………………………...………………………..6
(一)試驗材料……………………………………………………………………6
(二)水稻DNA萃取…………………............................…………………… 6
(三)DNA分子標誌引子合成……………………………………………… 8
(四)PCR分析………………………….…………………………………… 12
(五)瓊脂膠電泳分析………………….…………………………………… 12
(六)兩族群連鎖圖譜及其與物理比較圖譜的建立…….………………… 12
(七)兩族群連鎖圖譜之遺傳組成及分子標誌偏差分離分析…………… 13
1. 兩族群分子標誌之分離偏差關係…………………...………………… 13
2.親本遺傳貢獻度及偏向分析…………………………………………… 14
3. 族群同結合比例分析………………………………………….……… 15
4. 族群之遺傳重組分析…...……………………………………………… 15
(八)兩族群連鎖失衡分析….……………………………………………… 16
四、結果………………………………...…………………………………………. 17
(一)SSR分子標誌連鎖圖譜之建立……………………………………….… 17
(二)以兩族群之遺傳圖譜與物理圖譜建立比較圖譜………………..…….……17
(三)兩族群之遺傳組成及偏差分離分析……………………………...….… 25
1.親本遺傳貢獻度及偏向分析…………………………………………… 25
2.同結合基因型比例分析………………………………………………… 25
3.分子標誌偏差分離分析………………………………………………… 29
(四)兩族群之遺傳重組次數分析…………………………………………. 38
(五)兩族群之連鎖失衡分析………………………………………….…… 44
1.連鎖失衡圖譜分析………………………………………………..…… 44
2.連鎖失衡衰退圖分析………………………………………………..… 45
五、討論…………………………………………………………………………….. 54
(一)SSR分子標誌比較圖譜之建立……………………………..………… 54
(二)兩族群之遺傳組成及偏差分離分析…………... ………………...…… 55
1.親本遺傳貢獻度及偏向分析………………………………………....55
2.遺傳重組分析…...………………………………………….......…..……...57
(三)連鎖失衡分析…….……………….……......……......…....……....………… 59
六、結論……………………………………………………………………….. 61
七、參考文獻…………………………………………………………...…………62
附錄……………………………………………………...…….………….…….……...66


朱雅玲. 2002. 利用SSR分子標誌建立水稻連鎖圖譜及分析F_2族群之遺傳重組. 國立台灣大學農藝學研究所碩士論文.
行政院農業委員會. 1999~2014. 農業統計年報. 行政院農業委員會編印.
行政院農業委員會農糧署. 2009. 優良水稻栽培管理技術手冊. 台灣農藝學會.
李文雅. 2008. 水稻重組自交系連鎖圖譜之建立及遺傳重組分析. 臺灣大學農藝學研究所碩士論文.
郭婷玫. 2012. 利用分子標誌輔助選拔低白堊質稻米之優良品系. 臺灣大學農藝學研究所碩士論文.
臺灣省政府農林廳. 1955~1998. 台灣農業年報. 台灣省政府農林廳編印.
稻作育成品種資料庫. 取自05.30.2015. http://tris.tari.gov.tw:8080/index.jsp
謝汶宗. 2006. 利用SSR分子標誌分析水稻F_3族群之遺傳重組. 國立台灣大學農藝學研究所碩士論文.
品種・特性. 取自 http://ineweb.narcc.affrc.go.jp/
Akagi, H., Y. Yokozeki, A. Inagaki, and T. Fujimura. 1996. Microsatellite DNA markers for rice chromosomes. Theor. Appl. Genet. 93:1071-1077.
Botstein, D., R. L. White, M. Skolnick, and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J Hum. Genet. 32:314-31.
Broman, K. W. 2005. The genomes of recombinant inbred lines. Genetics 169: 1133-1146
Chang, T. T. 1976. The origin, evolution, cultivation, dissemination, and diversification of Asian and African rices. Euphytica 25:425-441
Chen, J., Q. Huang, D. Gao, J. Wang, Y. Lang, T. Liu, B. Li, Z. Bai, J. L. Goicoechea, C. Liang, C. Chen, W. Zhang, S. Sun, Y. Liao, X. Zhang, L. Yang, C. Song, M. Wang, J. Shi, G. Liu, J. Liu, H. Zhou, W. Zhou, Q. Yu, N. An, Y. Chen, Q. Cai, B. Wang, B. Liu, J. Min, Y. Huang, H. Wu, Z. Li, Y. Zhang, Y. Yin, W. Song, J. Jiang, S. A. Jackson, R. A. Wing, J. Wang, and M. Chen. 2013. Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat. Commun. 4: 1595
Crow, J. F. 2007. Haldane, Bailey, Taylor and recombinant-inbred lines. Genetics 176: 729-732
Devos, K. M. 2005. Updating the ''Crop circle''. Curr. Opin. Plant Biol. 8: 155-162.
Doyle, J. J., and Doyle J. L. 1990. Isolation of plant DNA from fresh tissue. Focus 12:13-15
Eckardt, N. A. 2008. Grass genome evolution. Plant Cell 20:3–4
Food and Agriculture Organization of the United Nations, FAOSTAT database. 2015. Retrieved from http://faostat3.fao.org/home/E
Fu, Y., T. J. Wen, Y. I. Ronin, H. D. Chen, L. Guo, D. I. Mester, Y. Yang, M. Lee, A. B. Korol, D. A. Ashlock, and P. S. Schnable. 2006. Genetic dissection of intermated recombinant inbred lines using a new genetic map of maize. Genetics 174: 1671-1683
Garris, A. J., T. H. Tai, J. Coburn, S. Kresovich, and S. R. McCouch. 2005. Genetic structure and diversity in Oryza sativa L. Genetics 169:1631-1638.
Gramene. 2015. GRAMENE. Retrieved from http://www.gramene.org/
Hammond, T. M., D. G. Rehard, H. Xiao, and P.K.T. Shiu. 2012. Molecular dissection of Neurospora Spore killer meiotic drive elements. Proc. Natl. Acad. Sci. 109: 12093-12098.
Harushima, Y., M. Nakagahra, M. Yano, T. Sasaki, and N. Kurata. 2001. A genome- wide survey of reproductive barriers in an intraspecific hybrid. Genetics 159: 883-92.
He, P., J. Z. Li, X. W. Zheng, L. S. Shen, C. F. Lu, Y. Chen, and L. H. Zhu. 2001. Comparison of molecular linkage maps and agronomic trait loci between DH and RIL populations derived from the same rice cross. Crop Sci. 41:1240-1246.
International Brachypodium Initiative. 2010. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463: 763-768.
International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome. Nature 436: 793-800.
Kawahara, Y., M. de la Bastide, J. P. Hamilton, H. Kanamori, W. R. McCombie, S. Ouyang, D. C. Schwartz, T. Tanaka, J. Wu, S. Zhou, K. L. Childs, R. M. Davidson, H. Lin, L. Quesada-Ocampo, B. Vaillancourt, H. Sakai, S. S. Lee, J. Kim, H. Numa, T. Itoh, C. R. Buell, and T. Matsumoto. 2013. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4.
Kosambi, D. D. 1944. The estimation of map distance from recombination values. Ann. Hum. Genet. 12: 172-175.
Lincoln, S. E., M. J. Daly, and E.S. Lander. 1993. Constructing Genetic Linkage Maps with MAPMAKER/EXP Version 3.0: A Tutorial and Reference Manual. 3rd ed. A Whitehead Institute for Biomedical Research Technical Report.
Lorenzen, L.L., S. F. Lin, and R. C. Shoemaker 1996. Soybean pedigree analysis using map-based molecular markers: recombination during cultivar development. Theor. Appl. Genet. 93:1251-1260.
Lu, J. J., and Chang T. T. 1980. Rice in its temporal and spatial perspectives. In B.S. Luh. Rice: Production and Utilization. Westport, CT: AVI, pp. 1-74.
Matsushita, S., T. Iseki, Y. Fukuta, E. Araki, S. Kobayashi, M. Osaki, and M. Yamagishi. 2003. Characterization of segregation distortion on chromosome 3 induced in wide hybridization between indica and japonica type rice varieties. Euphytica 134: 27-32
McCouch, S. R., L. Teytelman, Y. Xu, K. B. Lobos, K. Clare, M. Walton, B. Fu, R. Maghirang, Z. Li, Y. Xing, Q. Zhang, I. Kono, M. Yano, R. Fjellstrom, G. DeClerck, D. Schneider, S. Cartinhour, D. Ware, and L. Stein. 2002. Development of 2,240 new SSR markers for rice (Oryza sativa L.) DNA Res. 9: 199-207
Morgan, T. H., A. H. Sturtevant, H. J. Muller, C. B. Bridges. 1915. The Mechanism of Mendelian Heredity. New York: Henry Holt.
Nilsson, N. O., T. Säll, and B. O. Bengtsson. 1993. Chiasma and recombination data in plants: are they compatible? Trends Genet. 9: 344-8.
Nordborg, M. 2000. Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization. Genetics 154: 923-929.
Oka, H. I. 1953. Gene analysis of intervarietal hybrid sterility and certation due to certain recombinations of gamete-development-genes in rice. Japan. J. Breed. 3: 23-30.
Orjuela, J., A. Garavito, M. Bouniol, J. D. Arbelaez, L. Moreno, J. Kimball, G. Wilson, J. F. Rami, J. Tohme, S. R. McCouch, and M. Lorieux. 2010. A universal core genetic map for rice. Theor Appl Genet. 120:563-72.
Sandler, L., and E. Novitski. 1957. Meioticdrive as an evolutionary force. Am. Nat. 41: 105-110.
Sturtevant, A. H. 1913. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J. Exp. Zool. 14: 43-59.
Takeuchi, Y., T. Ebitani, T. Yamamoto, H. Sato, H. Ohta, H. Hirabayashi, H. Kato, I. Ando, H. Nemoto, T. Imbe, and Yano M. 2006. Development of isogenic lines of rice cultivar Koshihikari with early and late heading by marker-assisted selection. Breeding Sci. 56:405-413.
Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl. Acids Res. 17: 6463-6471.
Temnykh, S., W. D. Park, N. Ayres, S. Cartinhour, N. Hauck, L. Lipovich, Y. G. Cho, T. Ishii, and S. R. McCouch. 2000. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100: 697-712.
Temnykh, S., G. DeClerck, A. Lukashova, L. Lipovich, S. Cartinhour, and S. McCouch. 2001. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11: 1441-1452.
van Berloo, R. 2008. GGT 2.0: Versatile software for visualization and analysis of genetic data. J. Hered. 99: 232-236.
Vaughan, D. A, H. Morishima, and K. Kadowaki. 2003. Diversity in the Oryza genus. Curr. Opin. Plant Biol. 6: 139-46.
Voorrips, R. E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 93: 77-78.
Vos, P., R. Hogers, M. Bleeker, M. Reijans, M. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, and M. Kuiper. 1995. AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res. 23: 4407-4414.
Wang, D. G., J. B. Fan, C. J. Siao, A. Berno, P. Young, R. Sapolsky, G. Ghandour, N. Perkins, E. Winchester, J. Spencer, L. Kruglyak, L. Stein, L. Hsie, T. Topaloglou, E. Hubbell, E. Robinson, M. Mittmann, M. S. Morris, N. Shen, D. Kilburn, J. Rioux, C. Nusbaum, S. Rozen, T. J. Hudson, R. Lipshutz, M. Chee, and E. S. Lander. 1998. Large-scale identification, mapping, and genotyping of single nucleotide polymorphisms in the human genome. Science 280: 1077-1082.
Williams J. G., A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18: 6531-6535.
Xu, Y. 2010. Molecular plant breeding. Wallingford, UK Cambridge, MA:CABI Pub.
Xu, Y. B., S. R. McCouch, and Q. F. Zhang. 2005. How can we use genomics to improve cereals with rice as a reference genome? Plant Mol. Bio. 59:7-26.
Yu, J, S. Hu, J. Wang, G. K. Wong, S. Li, B. Liu, Y. Deng, L. Dai, Y. Zhou, and X. Zhang. 2002. A draft sequence of the rice genome (Oryza sativa L. spp. indica). Science 296:79-92
Zhang, L., S. Wang, H. Li, Q. Deng, A. Zheng, S. Li, P. Li, Z. Li, and J. Wang. 2010. Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theor. Appl. Genet. 121: 1071-1082.
Zietkiewicz, E. 1994. Genome fingerprinting by simple sequence repeat (SSR)- anchored polymerase chain reaction amplification. Genomics 20: 176-183.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top