跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/13 16:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪嘉良
研究生(外文):Chia-Liang Hung
論文名稱:光場影像多基準線視差計算分析與架構設計
論文名稱(外文):Analysis and Architecture Design for Multi-baseline Disparity Estimation for Central View in Light Fields
指導教授:陳良基陳良基引用關係
指導教授(外文):Liang-Gee Chen
口試委員:賴永康簡韶逸黃聖傑黃朝宗
口試委員(外文):Yeong-Kang LaiShao-Yi ChienSHENG-CHIEH HUANGChao-Tsung Huang
口試日期:2014-10-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:131
中文關鍵詞:視差計算光場多基準線信賴傳遞透鏡陣列相機多元組態訊息更新
外文關鍵詞:Disparity EstimationLight FieldsMulti-baselineBelief PropagationLens-array CameraVariant ConfigurationsMessage-update
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的日新月異,光場相機已逐漸取代傳統相機,而各種光場應用中,深度資訊扮演了極為重要的角色。相較於傳統平面影像,還原擁有視差的影像能提供較高品質的深度資訊,立體場景較能完整呈現,可帶給人們更深的立體感受。即使近年來演算法的迅速發展,目前高水準的視差算演算法仍然無法符合即時影像生成的需求。產生即時且準確的視差深度圖已成為現今研究中的一項挑戰。

視差計算可被定義為在二維度馬可夫隨機場的一種能量最小化問題。在多種整體最佳化的方法中,信賴傳遞演算法提供了高品質的結果並且有很多的好處於硬體實作上,有著很高的潛力達到即時影像處理的需求。信賴傳遞演算法主要是考量每一節點與鄰近節點的相互關係,配合節點本身可能的機率分布,決定最佳的深度資訊。再利用節點之間的訊息傳遞,達成最後收斂的效果,找出一組最佳的深度資訊,進行深度修補步驟。然而,由於迭代的程序,信賴傳遞演算法需要很高的頻寬、記憶體以及運算成本。方格信賴傳遞演算法大幅節省記憶體的使用量,並能保有訊息交換的資訊。

本論文首先探討多元光場組態下使用多基準線視差估計演算法計算所得之中央視差深度資訊,針對不同視圖數量以及視圖組態分析資料計算時間及視差深度表現。接著討論現行信賴傳遞演算法在硬體實作上遭遇的問題,由於圖片解析度的提高,深度精細度也隨之必須提高,造成了原始訊息更新方式在硬體實作上造成面積極大的困擾,而軟體上高效率的演算法因為訊息之間的相依性,使之於硬體實作時無法達到即時更新的需求。先期曾經提出之快速訊息更新方式,雖然能夠提供高解析度之視差計算結果,但因做了簡單的假設使得品質有部分犧牲,在視圖數量較少的狀況下品質落差更為嚴重。

本論文並針對複雜度的簡化提出了硬體上有效率的訊息計算方式,能在高精細度且不犧牲任何品質的狀況下,大量降低運算複雜度,保有效能,並能在硬體架構上實行。最後,在方格信賴傳遞演算法為基礎的架構下,提出了新的訊息更新處理單元,節省了極大部分信賴傳遞演算法硬體架構面積。

With the rapid improvement of technology, light-field cameras have been growing more and more popular. Disparity map plays an important role for many light-field applications in light-field systems. Despite recent advances, state-of-the-art algorithms fail to generate a precise disparity map rapidly enough for VLSI real time processing. To generate real-time and accurate disparity map has become the bottleneck for current research.

Disparity estimation can be formulated as an energy minimization problem on a 2D Markov Random Fields (MRFs). Among many MRF global optimization method, belief propagation (BP) is a popular global optimization algorithm which gives high quality and has several advantages for hardware implementation and highly potential to achieve real-time processing. However, it requires high bandwidth, memory and computational costs because of costly iterative operations, the original belief propagation is computationally expensive for real-time system implementation. Tile-based BP is an efficient improved BP for hardware implementation. Boundary messages loaded from different directions have been performed with different iterations to reduce high memory and bandwidth requirements.

In this thesis, we first examine variant view configurations of light fields for multi-baseline disparity estimation for central view. We analyze the computation time of data cost generation against different number of views and the performance of each kind of variant light-field configurations for multi-baseline setting. After analysis on variant light-field configurations, we introduce current techniques of belief propagation and examine the problems of existing methods. Followed by introducing a novel hardware-efficient message-update method to remove redundant computational costs during message-update based on tile-based BP. We focus on the algorithm and hardware architecture design of multi-baseline disparity estimation from light fields. At first, we analyze the hardware cost in the belief propagation system, and indicate the challenge and bottleneck in the area and latency resource requirement to preserve high-quality in light fields. We analyze the computation time in the view of software implementation. After software analysis, we analyze the latency and area of the belief propagation from the perspective of hardware implementation. And then we exploit the unique characteristics of the generalized truncated linear model of the smoothness term in the Markov random field and propose an efficient hardware-oriented message-update algorithm from the aspect of hardware implementation with corresponding message-update process element (PE). This message-update PE indeed reduce the complexity of message construction for belief propagation, and hence greatly reduce the area and cycle counts.

The Authorization of Oral Members for Research Dissertation i
Acknowledgement iii
Abstract in Chinese v
Abstract ix
1 Introduction 1
1.1 Light Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Light-field Cameras . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Stereo Vision . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Depth and Disparity . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . 16
2 Study of Disparity Estimation for Central View 17
2.1 Background of Disparity Estimation and Belief Propagation 18
2.1.1 Intro duction to Markov Random Fields . . . . . . . . 20
2.1.2 Similarity Measurement . . . . . . . . . . . . . . . . 26
2.1.3 Finding Optimal Lab els using Tile-based BP . . . . . 28
2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3 Analysis of Variant Light-field Configurations for Multibaseline Disparity Estimation for Central View 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Proposed System . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Multi-baseline Disparity Estimation for Central View 41
3.2.2 Variant light-field configurations . . . . . . . . . . . . 42
3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Comparison and Discussion . . . . . . . . . . . . . . . . . . 55
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4 Problem with Multi-baseline Disparity Estimation using Belief Propagation 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Original Message-update Algorithm . . . . . . . . . . . . . . 70
4.3 Efficient Message-update Algorithms . . . . . . . . . . . . . 71
4.3.1 Two-pass Message-update Algorithm . . . . . . . . . 75
4.3.2 Fast Message-update Algorithm . . . . . . . . . . . . 77
4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 79
4.5 Comparison and Discussion . . . . . . . . . . . . . . . . . . 82
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5 Architecture Design for Disparity Estimation for Central
View in Light Fields 87
5.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Software Analysis . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 Proposed Message-update Algorithm . . . . . . . . . . . . . 95
5.4 Processing Element Design . . . . . . . . . . . . . . . . . . . 97
5.4.1 Hardware Analysis . . . . . . . . . . . . . . . . . . . 100
5.5 Comparison and Discussion . . . . . . . . . . . . . . . . . . 113
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6 Conclusion 117
6.1 Principal Contributions . . . . . . . . . . . . . . . . . . . . . 117
6.2 Analysis of Variant View Configurations in Light Fields . . . 118
6.3 Analysis of Disparity Estimation using Belief Propagation . 118
6.4 Efficient Message-update PE for Belief Propagation . . . . . 119
6.5 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . 120
6.5.1 Multi-baseline Disparity Estimation . . . . . . . . . . 120
6.5.2 Message-update PE for Belief Propagation . . . . . . 120
Bibliography 121

[1] I. Magic Eye and A. o. V. T. E. E. f. L. E. Rachel Co op er, “Magic eye
how to see 3d.” http://www.vision3d.com/stereo.html, 2014.
[2] S. Wanner, S. Meister, and B. Goldluecke, “Datasets and benchmarks
for densely sampled 4d light fields,” 2013.
[3] C.-C. Cheng, C.-K. Liang, Y.-C. Lai, H. Chen, and L.-G. Chen, “Fast
belief propagation process element for high-quality stereo estimation,”
in Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE
International Conference on, pp. 745–748, April 2009.
[4] P. Felzenszwalb and D. Huttenlocher, “Efficient belief propagation
for early vision,” in Computer Vision and Pattern Recognition, 2004.
CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, vol. 1, pp. I–261–I–268 Vol.1, June 2004.
[5] M. Faraday, “Liv. thoughts on ray-vibrations,” Philosophical Magazine
Series 3, vol. 28, no. 188, pp. 345–350, 1846.
[6] A. Gershun, “The light field.” http://users.cms.caltech.edu/
~lessig/data/gershun_light_field.pdf, 1936.
[7] E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing,
pp. 3–20, MIT Press, 1991.
[8] J. Arvo, “The irradiance jacobian for partially occluded polyhedral
sources,” in Proceedings of the 21st Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’94, (New York, NY,
USA), pp. 343–350, ACM, 1994.
[9] P. Moon and D. E. Spencer, The photic field. 1981.
[10] M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’96, (New York, NY, USA), pp. 31–42, ACM,
1996.
[11] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” in Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’96, (New York, NY,
USA), pp. 43–54, ACM, 1996.
[12] A. Zomet, D. Feldman, S. Peleg, and D. Weinshall, “Mosaicing new
views: the crossed-slits projection,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 25, pp. 741–754, June 2003.
[13] J. Yu and L. McMillan, “General linear cameras,” in Computer Vision
- ECCV 2004 (T. Pajdla and J. Matas, eds.), vol. 3022 of Lecture Notes
in Computer Science, pp. 14–27, Springer Berlin Heidelberg, 2004.
[14] A. Roman, G. Garg, and M. Levoy, “Interactive design of multiperspective images for visualizing urban landscapes,” 2004.
[15] A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized light fields,” in Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’00, (New
York, NY, USA), pp. 297–306, ACM Press/Addison-Wesley Publishing
Co., 2000.
[16] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth,
A. Adams, M. Horowitz, and M. Levoy, “High performance imaging
using large camera arrays,” ACM Trans. Graph., vol. 24, pp. 765–776,
July 2005.
[17] R. Ng, M. Levoy, M. Br’edif, G. Duval, M. Horowitz, and P. Hanrahan,
“Light field photography with a hand-held plenoptic camera,” tech.
rep., Apr. 2005.
[18] B. Javidi, Three-Dimensional Television, Video and Display Technology. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2002.
[19] W. Matusik and H. Pfister, “3d tv,” in ACM SIGGRAPH 2004 Emerging Technologies, SIGGRAPH ’04, (New York, NY, USA), pp. 2–,
ACM, 2004.
[20] M. W. Halle, S. A. Benton, M. A. Klug, and J. S. Underkoffler, “The
ultragram: A generalized holographic stereogram,” in In Proceedings
of the SPIE Practical Holography V, 1991.
[21] M. W. Halle, “Holographic stereograms as discrete imaging systems,”
in Practical Holography, Proc. SPIE, pp. 73–84, 1994.
[22] G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays:
Compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph., vol. 31, pp. 80:1–80:11, July
2012.
[23] G. Wetzstein and et al., “Layered 3d: Tomographic image synthesis for
attenuation-based light field and high dynamic range displays,” 2011.
[24] D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar,
“Polarization fields: dynamic light field display using multi-layer lcds.,”
ACM Trans. Graph., vol. 30, no. 6, p. 186, 2011.
[25] D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive
parallax barriers: optimizing dual-layer 3d displays using low-rank light
field factorization,” ACM Trans. Graph., vol. 29, no. 6, pp. 163:1–
163:10, 2010.
[26] R. Agrawal, A. Wilson, C. Veeraraghavan, R. Raskar, A. Agrawal, and
C. A. Wilson, “Reducing glare effects of camera lenses,” 2008.
[27] R. Raskar, A. Agrawal, C. A. Wilson, and A. Veeraraghavan, “Glare
aware photography: 4d ray sampling for reducing glare effects of camera lenses,” ACM Trans. Graph., vol. 27, pp. 56:1–56:10, Aug. 2008.
[28] B. S. Wilburn, M. Smulski, H.-H. K. Lee, and M. A. Horowitz, “Light
field video camera,” 2001.
[29] A. Redert, M. de Beeck, C. Fehn, W. Ijsselsteijn, M. Pollefeys,
L. Van Gool, E. Ofek, I. Sexton, and P. Surman, “Advanced threedimensional television system technologies,” in 3D Data Processing
Visualization and Transmission, 2002. Proceedings. First International
Symposium on, pp. 313–319, 2002.
[30] C. Fehn, “A 3d-tv system based on video plus depth information,”
in Signals, Systems and Computers, 2004. Conference Record of the
Thirty-Seventh Asilomar Conference on, vol. 2, pp. 1529–1533 Vol.2,
Nov 2003.
[31] H. Hirschmuller and D. Scharstein, “Evaluation of stereo matching
costs on images with radiometric differences,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 31, pp. 1582–1599,
Sept 2009.
[32] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 23, pp. 1222–1239, Nov 2001.
[33] W. Freeman and E. Pasztor, “Learning low-level vision,” in Computer
Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, vol. 2, pp. 1182–1189 vol.2, 1999.
[34] R. Kindermann, J. Snell, and A. M. Society, Markov Random Fields
and Their Applications. AMS books online, American Mathematical
Society, 1980.
[35] S. Z. Li, Markov Random Field Modeling in Image Analysis. Springer
Publishing Company, Incorporated, 3rd ed., 2009.
[36] J. Besag, “On the statistical analysis of dirty pictures,” Journal of
the Royal Statistical Society. Series B (Methodological), vol. 48, no. 3,
pp. 259–302, 1986.
[37] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 6, pp. 721–741, Nov. 1984.
[38] S. Barnard, “Stochastic stereo matching over scale,” International
Journal of Computer Vision, vol. 3, no. 1, pp. 17–32, 1989.
[39] V. Kolmogorov and R. Zabin, “What energy functions can be minimized via graph cuts?,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 26, pp. 147–159, Feb 2004.
[40] J. Sun, N.-N. Zheng, and H.-Y. Shum, “Stereo matching using belief propagation,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 25, pp. 787–800, July 2003.
[41] Y. Weiss and W. Freeman, “On the optimality of solutions of the maxproduct belief-propagation algorithm in arbitrary graphs,” Information
Theory, IEEE Transactions on, vol. 47, pp. 736–744, Feb 2001.
[42] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized belief propagation,” in IN NIPS 13, pp. 689–695, MIT Press, 2000.
[43] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International Journal of
Computer Vision, vol. 47, no. 1-3, pp. 7–42, 2002.
[44] M. Tappen and W. Freeman, “Comparison of graph cuts with belief
propagation for stereo, using identical mrf parameters,” in Computer
Vision, 2003. Proceedings. Ninth IEEE International Conference on,
pp. 900–906 vol.2, Oct 2003.
[45] S. GEMAN and C. GRAFFIGNE, “Markov random field image models
and their applications to computer vision,” in International Congress
of Mathematicians, p. 1496, 1986.
[46] P. Chou and C. Brown, “The theory and practice of bayesian image
labeling,” International Journal of Computer Vision, vol. 4, no. 3,
pp. 185–210, 1990.
[47] Y. Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal
boundary & region segmentation of objects in nd images,” in Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, vol. 1, pp. 105–112, IEEE, 2001.
[48] C. Rother, V. Kolmogorov, and A. Blake, “”grabcut”: Interactive foreground extraction using iterated graph cuts,” ACM Trans. Graph.,
vol. 23, pp. 309–314, Aug. 2004.
[49] A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker, A. Colburn,
B. Curless, D. Salesin, and M. Cohen, “Interactive digital photomontage,” ACM Trans. Graph., vol. 23, pp. 294–302, Aug. 2004.
[50] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, A. Agarwala, and
C. Rother, “A comparative study of energy minimization methods for
markov random fields,” in In ECCV, pp. 16–29, 2006.
[51] R. Zabih and J. Woodfill, “Non-parametric local transforms for computing visual correspondence,” in Computer Vision ECCV ’94 (J.-O.
Eklundh, ed.), vol. 801 of Lecture Notes in Computer Science, pp. 151–
158, Springer Berlin Heidelberg, 1994.
[52] T. Yu, R.-S. Lin, B. Super, and B. Tang, “Efficient message representations for belief propagation,” in Computer Vision, 2007. ICCV 2007.
IEEE 11th International Conference on, pp. 1–8, Oct 2007.
[53] Y.-C. Tseng, N. Chang, and T.-S. Chang, “Low memory cost blockbased belief propagation for stereo correspondence,” in Multimedia and
Expo, 2007 IEEE International Conference on, pp. 1415–1418, July
2007.
[54] C.-C. Cheng, C.-T. Li, C.-K. Liang, Y.-C. Lai, and L.-G. Chen, “Architecture design of stereo matching using belief propagation,” in Circuits
and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, pp. 4109–4112, May 2010.
[55] M. Harris, “Focusing on everything,” Spectrum, IEEE, vol. 49, pp. 44–
50, May 2012.
[56] H.-Y. Shum, S.-C. Chan, and S. B. Kang, Image-based rendering.
Springer, 2008.
[57] L. McMillan and G. Bishop, “Plenoptic modeling: An image-based
rendering system,” 1995.
[58] S. Seitz and C. Dyer, “Physically-valid view synthesis by image interpolation,” in Representation of Visual Scenes, 1995. (In Conjuction
with ICCV’95), Proceedings IEEE Workshop on, pp. 18–25, Jun 1995.
[59] A. Katayama, K. Tanaka, T. Oshino, and H. Tamura, “Viewpointdependent stereoscopic display using interpolation of multiviewpoint
images,” 1995.
[60] M. Levoy, “Light fields and computational imaging,” Computer, vol. 39,
no. 8, pp. 46–55, 2006.
[61] A. Criminisi, S. B. Kang, R. Swaminathan, R. Szeliski, and P. An, “Extracting layers and analyzing their specular properties using epipolarplane-image analysis,” tech. rep., Computer Vision and Image Understanding, 2002.
[62] R. Bolles, H. Baker, and D. Marimont, “Epipolar-plane image analysis: An approach to determining structure from motion,” International
Journal of Computer Vision, vol. 1, no. 1, pp. 7–55, 1987.
[63] B. Goldluecke, “Globally consistent depth labeling of 4d light fields,”
in Proceedings of the 2012 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), CVPR ’12, (Washington, DC, USA),
pp. 41–48, IEEE Computer Society, 2012.
[64] V. Vaish, B. Wilburn, N. Joshi, and M. Levoy, “Using plane + parallax
for calibrating dense camera arrays,” in In Proc. CVPR, pp. 2–9, 2004.
[65] V. Vaish and A. Adams, “The (new) stanford light field archive.” Retrieved Oct 1, 2014, from the World Wide Web: http://lightfield.
stanford.edu, 2008.
[66] T. Georgiev and A. Lumsdaine, “Focused plenoptic camera and rendering,” Journal of Electronic Imaging, vol. 19, no. 2, pp. 021106–021106,
2010.
[67] T. Bishop and P. Favaro, “Full-resolution depth map estimation from
an aliased plenoptic light field,” in Computer Vision ACCV 2010
(R. Kimmel, R. Klette, and A. Sugimoto, eds.), vol. 6493 of Lecture
Notes in Computer Science, pp. 186–200, Springer Berlin Heidelberg,
2011.
[68] Z.-F. Wang and Z.-G. Zheng, “A region based stereo matching algorithm using cooperative optimization,” in Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pp. 1–8,
IEEE, 2008.
[69] X. Mei, X. Sun, M. Zhou, H. Wang, X. Zhang, et al., “On building
an accurate stereo matching system on graphics hardware,” in Computer Vision Workshops (ICCV Workshops), 2011 IEEE International
Conference on, pp. 467–474, IEEE, 2011.
[70] G. Egnal and R. P. Wildes, “Detecting binocular half-occlusions: empirical comparisons of five approaches,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 24, no. 8, pp. 1127–1133, 2002.
[71] C.-K. Liang, T.-H. Lin, B.-Y. Wong, C. Liu, and H. H. Chen, “Programmable aperture photography: multiplexed light field acquisition,”
in ACM Transactions on Graphics (TOG), vol. 27, p. 55, ACM, 2008.
[72] M.-A. Drouin, M. Trudeau, and S. Roy, “Non-uniform hierarchical geoconsistency for multi-baseline stereo,” in Computer and Robot Vision,
2007. CRV’07. Fourth Canadian Conference on, pp. 208–215, IEEE,
2007.
[73] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov,
A. Agarwala, M. Tappen, and C. Rother, “A comparative study of energy minimization methods for markov random fields with smoothnessbased priors,” Pattern Analysis and Machine Intel ligence, IEEE Transactions on, vol. 30, pp. 1068–1080, June 2008.
[74] D. Scharstein, “Stereo datasets with ground truth.” Retrieved Oct 1,
2014, from the World Wide Web: http://vision.middlebury.edu/
stereo/data/scenes2001/, 2011.
[75] Z. Wang and A. C. Bovik, “Mean squared error: love it or leave it?
a new look at signal fidelity measures,” Signal Processing Magazine,
IEEE, vol. 26, no. 1, pp. 98–117, 2009.
[76] C.-C. Cheng, C.-K. Liang, Y.-C. Lai, H. Chen, and L.-G. Chen, “Analysis of belief propagation for hardware realization,” in Signal Processing
Systems, 2008. SiPS 2008. IEEE Workshop on, pp. 152–157, Oct 2008.
[77] Y.-C. Lai, C.-C. Cheng, C.-K. Liang, and L.-G. Chen, “Efficient message reduction algorithm for stereo matching using belief propagation,”
in Image Processing (ICIP), 2010 17th IEEE International Conference
on, pp. 2977–2980, Sept 2010.
[78] G. Borgefors, “Distance transformations in digital images,” Computer
Vision, Graphics, and Image Processing, vol. 34, no. 3, pp. 344 – 371,
1986.
[79] P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of
sampled functions,” tech. rep., Cornell Computing and Information
Science, 2004.
[80] C.-K. Liang, C.-C. Cheng, Y.-C. Lai, L.-G. Chen, and H. Chen,
“Hardware-efficient belief propagation,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 21, pp. 525–537, May
2011.
[81] Wikipedia, “Single-elimination tournament — wikipedia, the free encyclopedia,” 2014. [Online; accessed 16-June-2014].

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top