跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 03:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡弘毅
研究生(外文):Hung-Yi Tsai
論文名稱:金屬與鍺和鎳與鍺錫之接觸電性研究
論文名稱(外文):Electrical characteristics of metal/n-Ge and Ni/n-GeSn contact
指導教授:鄭鴻祥鄭鴻祥引用關係
指導教授(外文):Hung-Hsiang Cheng
口試委員:楊英杰余英松洪冠明
口試日期:2015-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:69
中文關鍵詞:鍺錫合金費米能階釘札歐姆接觸比接觸電阻蕭特基電位障氧化鋁
外文關鍵詞:GeSn alloyFermi level pinningOhmic contactspecific contact resistivitySchottky barrier heightAl2O3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的進展,以矽為基礎的金屬氧化物半導體場效電晶體已經達到它們的物理極限。在最近的發展中,鍺和鍺錫合金因為擁有比矽還高的載子遷移率,而被視為是金屬氧化物半導體場效電晶體之通道材料的可能候選。然而,在製程上許多關於鍺和鍺錫的挑戰依然需要克服。在這些問題中,最困難的是製造出一個低電阻的金屬與半導體接觸。
在本篇論文中,我們研究了金屬/N型鍺、鎳/N型鍺錫,以及鎳/本質鍺錫/N型鍺這三種結構的接觸電性。對於金屬/N型鍺的系統,由於介面能態以及鍺的原生氧化物的影響,費米能階釘札效應對於金屬/N型鍺的接面造成了一個嚴重的影響。這裡我們藉由熱退火的處理成功做出了金銻合金/N型鍺的歐姆接觸,其最小的比接觸電阻為0.622 (Ω∙cm^2)。我們也求出了金屬/N型鍺的其他電性參數,其中包括蕭特基電位障的值大約都是在0.5 (eV)。而為了能夠製作出一個穩定的金屬氧化物半導體的結構,我們放入不同厚度的氧化鋁在鎳/N型鍺之中。從電流-電壓和電容-電壓的特性中可以發現,對於鎳/氧化鋁/N型鍺的結構而言,6.7奈米和18.4奈米的氧化鋁表現出比較好的曲線及趨勢。
對於鎳/N型鍺錫的系統,N型鍺錫層的薄膜品質經由不同的量測方法來求得。我們成功做出了鎳/ N型鍺錫的歐姆接觸,並且得到比接觸電阻的值為4.361×10-3 (Ω∙cm^2)。我們也成長了一層氧化鋁來形成鎳/氧化鋁/N型鍺錫的結構,其中電性參數是從電流-電壓的量測中萃取。在最後一個部分,我們討論了不同厚度的本質鍺錫層對於鎳/本質鍺錫/N型鍺這種系統下的影響。從電流-電壓的量測中發現,隨著本質鍺錫層的厚度增加,鎳/本質鍺錫/N型鍺的順偏電流將會降低。

Following the advance of technology, silicon-based metal-oxide-semiconductor field-effect transistors (MOSFETs) are reaching their physical limits. In the recent development, Germanium (Ge) and Germanium-tin (GeSn) alloy have been considered as the possible candidates for the channel materials of MOSFET due to the higher carrier mobility compared to silicon (Si). Nevertheless, many challenges concerning Ge and GeSn still need to overcome. Among these issues, the most difficult is to fabricate a low resistance electrical contact between metal and semiconductor.
In this thesis, we investigate the electrical characteristics of metal/n-Ge, Ni/n-GeSn, and Ni/i-GeSn/n-Ge. For the metal/n-Ge system, Fermi level pining has caused a severely influence on the metal/n-Ge interface due to the interface states and the Ge native oxide. Here we show that Ohmic contact of AuSb/n-Ge can be achieved by thermal annealing, and the minimum specific contact resistivity is 0.622 (Ω∙cm^2). The electrical parameters of metal/n-Ge system have been extracted, where the values of Schottky barrier height are in the same order of 0.5 (eV). In order to make a stable metal-oxide-semiconductor (MOS) structure, Al2O3 is placed between Ni/n-Ge with different thickness. From the current-voltage (I-V) and capacitance-voltage (C-V) characteristics, it shows a better trend for Ni/Al2O3/n-Ge with 6.7 and 18.4 nm Al2O3 layer.
For the Ni/n-GeSn system, film quality of n-GeSn is measured by different characterization techniques. Ohmic contact to Ni/n-GeSn can be achieved, and the specific contact resistivity is 4.361×10-3 (Ω∙cm^2). We have grown an Al2O3 layer to form Ni/Al2O3/n-GeSn, where the electrical parameters have been extracted by the I-V measurement. In the last section, we discuss the influence of different i-GeSn thickness on the Ni/i-GeSn/n-Ge system. From the I-V measurement, forward current of Ni/i-GeSn/n-Ge is reduced when increasing the thickness of i-GeSn.

口試委員審定書……..…………………………..…………………………i
誌謝…..………………………………………..…………………………...ii
摘要…..……………………………………………………………………iii
Abstract……………………………………………………………………iv
Contents……………………………………………………………………vi
List of Figures……………………………………………………………viii
List of Tables…………………………………………………………….....x

Chapter 1 Introduction 1
1.1 CMOS technology and scaling 1
1.1.1 Germanium MOSFET 3
1.1.2 Germanium-tin MOSFET 4
1.2 Metal-Semiconductor contact 6
1.3 Interface states and Fermi level pinning on metal/germanium interface 8
1.4 Specific contact resistivity and transmission line method 12
1.5 Theoretical model of MOS capacitor 13
Chapter 2 Experimental Equipment and Characterization Techniques 16
2.1 Experimental equipment 16
2.1.1 Molecular beam epitaxy 16
2.1.2 Atomic layer deposition 18
2.1.3 Electron beam evaporator 19
2.2 Characterization techniques 20
2.2.1 Hall effect measurement 21
2.2.2 Atomic force microscope 22
2.2.3 Transmission electron microscope 24
2.2.4 I-V and C-V measurement 25
Chapter 3 Electrical characteristics of metal/n-Ge contact 26
3.1 Introduction 26
3.2 Hall effect measurement 27
3.3 AFM measurement 27
3.4 Ohmic contact test for metal/n-Ge 31
3.5 Specific contact resistivity of AuSb/n-Ge 35
3.6 Schottky barrier height extraction of metal/n-Ge 37
3.7 Electrical characteristics of Ni/Al2O3/n-Ge MOS structure 42
Chapter 4 Electrical characteristics of Ni/n-GeSn contact 49
4.1 Introduction 49
4.2 Sample structure 49
4.3 XRD measurement 52
4.4 AFM measurement 53
4.5 Ohmic contact formation of Ni/n-GeSn 55
4.6 Electrical characteristics of Ni/Al2O3/n-GeSn contact 56
4.7 Transforming the I-V characteristics of Ni/n-Ge by an i-GeSn layer 60
Chapter 5 Summary and future work 64
5.1 Summary 64
5.2 Future work 65
References 66


[1]Brain Wang, “Intel 22nm 3-D tri-gate transistor technology,” May 4, 2011, http://nextbigfuture.com/2011/05/intel-22nm-3-d-tri-gate-transistor.html.
[2]Brain Wang, “Intel talks about 8 nanometer nodes for 2015 or 2017,” June 16, 2011, http://nextbigfuture.com/2011/06/intel-talks-about-8-nanometer-nodes-for.html.
[3]T. Nishimura, K. Kita, and A. Toriumi, Appl. Phys. Lett. 91, 123123 (2007).
[4]M. Kobayashi, A. Kinoshita, K. Saraswat, H. S. Philip Wong, and Y. Nishi, Appl. Phys. Lett. 105, 023702 (2009).
[5]R. R. Lieten, S. Degroote, M. Kuijk, and G. Borghs, Appl. Phys. Lett. 92, 022106 (2008).
[6]D. R. Gajula, P. Baine, M. Modreanu, P. K. Hurley, B. M. Armstrong, and D. W. Mcneill, Appl. Phys. Lett. 104, 012102 (2014).
[7]S.Takeuchi, Y. Shimura, T. Nishimura, et al. “Ge1-xSnx stressors for strained-Ge CMOS,” Solid state electronics, vol.60, no.1, pp.53-57, 2011.
[8]Suyog Gupta, “Germanium-tin (GeSn) technology,” Ph.D. dissertation, Stanford University, America, 2013.
[9]G. Han, S. Su, L. Wang, et al. “Strained germanium-tin (GeSn) n-channel MOSFETs featuring low temperature n+/p junction formation and GeSnO2 interfacial layer,” VLSI Technology (VLSIT), 2012 Symposium on, pp.97,98, 2012.
[10]Gupta. S, R. Chen, Blanka Magyari-Kope, et al. “GeSn technology: Extending the Ge electronics roadmap,” Electron Devices Meeting (IEDM), 2011 IEEE International, pp.16.6.1, 16.6.4, 2011.
[11]L. Wang, S. Su, W. Wang, et al. “Strained germanium-tin (GeSn) p-channel metal-oxide-semiconductor field-effect-transistor (p-MOSFETs) with ammonium sulfide passivation,” Solid-State Electronics, vol. 83, pp.66-70, 2013.
[12]R. W. Olesinski, G. J. Abbaschian, “The Ge-Sn (Germanium-Tin) system,” Bulletin of Alloy Phase Diagrams, vol. 5,no.3, pp.265-271, 1984.
[13]S. M. Sze, Kwok K. Ng, Physics of Semiconductor Devices, Wiley-Interscience, 2006.
[14]E. H. Rhoderick, “Metal-semiconductor contacts,” IEE Proceedings I, vol. 129, no.1, 1982.
[15]Donald A. Neamen, Semiconductor physics and devices: basic principle. : McGraw-Hill, 2003.
[16]A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelous, Appl. Phys. Lett. 89, 252110 (2006).
[17]Y. Zhou, M. Ogawa, X. Han, and K. L. Wang, Appl. Phys. Lett. 93,202105 (2008).
[18] J. Y. J. Lin, A. M. Roy, K. C. Saraswat, “Reduction in Specific Contact Resistivity to "n" ^"+" Ge Using TiO2 Interfacial Layer,” Electron Device Letter, IEEE, vol.33, no.11, 2012.
[19]B. Y. Tsui and M. H. Kao, Appl. Phys. Lett. 103, 032104 (2013).
[20]G. K. Reeves, H. B. Harrison, “Obtaining the specific contact resistance from transmission line model measurements,” Electron Device Letters, IEEE, vol.3, no.5, pp.111, 113, 1982.
[21]E. H. Nicollian and J. R. Brews, MOS (Metal Oxide semiconductor) Physics and Technology, John Wiley & Sons, pp.325-328, 1982.
[22]A. Y. Cho, J. R. Arthur, Prog. Solid State Chem. 10, 157 (1975).
[23]W. C. Tian, “Thin film deposition,” class note for VLSI technologies, Graduate Institute of Electronics Engineering, National Taiwan University, winter, 2013.
[24]Richard W. Johnson, Adam Hultqvist, Stacey F. Bent, “A brief review of atomic layer deposition: from fundamentals to applications,” Materials Today, vol. 17, pp. 236-246, June 2014.
[25]Japan Electron Optics Laboratory Co., Ltd, “Outline of electron beam evaporation beam deposition,” http://www.jeol.co.jp/en/science/eb.html.
[26]Dr. Lawrence Kulinsky, “Advanced manufacturing choices,” Spring, 2014, http://files.campus.edublogs.org/blog.nus.edu.sg/dist/3/2069/files/2012/03/afm-r3jgkw.gif.
[27]T. Akane, J. Tanaka, H. Okumura, and S. Matsumoto, “Preparation of high-quality Ge surface for MBE,” Applied Surface Science, vol.108, pp.303-305, February 1997.
[28]H. H. Wei, G. He, J. Gao, et al. “Interface optimization and modification of band offsets of ALD-derived Al2O3/HfO2/Al2O3/Ge gate stacks by annealing temperature,” Journal of Alloys and compounds, vol.615, pp.672-675, December 2014.
[29]N. Cerniglia and P. Wang, “Dissolution of Germanium in Aqueous Hydrogen Peroxide Solution,” J. Electrochem. Soc, vol.109, pp.508-512, 1962.
[30]S. K. Cheung and N. W. Cheung, Appl. Phys. Lett. 49, 85 (1986).
[31]S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium,” Journal of Vacuum Science & Technology A, vol.24, pp.474-485, 2006.
[32]H. Li, H. H. Cheng, et al. Appl. Phys. Lett. 104, 241904 (2014).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top