跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/31 10:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃思軒
研究生(外文):Ssu-Hsuan Huang
論文名稱:鍺錫合金光電元件之性質研究
論文名稱(外文):Investigation of germanium-tin alloy optoelectronics
指導教授:楊英杰楊英杰引用關係
口試委員:鄭鴻祥洪冠明余英松
口試日期:2015-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:69
中文關鍵詞:鍺錫合金直接能隙光偵測器光響應度
外文關鍵詞:germanium tin alloysdirect energy gapphotodetectorsresponsivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
紅外光偵測器被廣泛應用在工業檢測、夜視、軍事、生醫等用途,隨著近年
來物聯網的發展,紅外光偵測器也是智慧型家庭等物聯網系統中重要的監視器元
件。其中2-3微米波長的光,較易穿透空氣中的水氣,因此在惡劣的天候下也能
遠距離進行目標偵測。
在四族中的鍺本身具有許多優良特性,如較高的電子遷移率以及在直接能隙
與間接能隙之間具有較低的能量差使其成為另一個研究焦點。本研究中,在鍺中
摻入適量的錫而形成鍺錫合金,理論上能縮小鍺的直接能隙與間接能隙之間的差
距,當超過一定量後將轉成直接能隙之材料。目前運用於焦平面陣列(FPA)之材
料有相當多種,如:CdZnTe,HgCdTe(MCT)……等複合材料。在近紅外光波段主要
以InGaAs為主要之主動層材料,藉由鍺中摻入錫之技術將有機會涵蓋InGaAs之
吸收波段(0.9~1.7um)。
本實驗中,我們運用分子束磊晶技術成長鍺錫合金PIN結構之樣品,製作成
光偵測器。再以鍺錫合金製作之光偵測器,量測其變溫下之光偵測特性變化。並
由實驗結果探討變溫下對於鍺錫合金之光響應度的物理特性。以此為基礎,我們
最終想製作鍺錫合金的焦平面陣列運用於近紅外光。


Infrared light detectors are widely used in industrial inspection, night vision, military, biomedical and other purposes. Recently, with the development of Internet of Things, infrared light detectors which are a part of monitor systems are also important for smart home. In 2-3 micro meter wavelength of light which easily penetrates water vapor in the air can be detected by the infrared photodetector at the
long distance in the bad weather.
Germanium (Ge) has lots of benefits in group IV materials. For example, germanium has higher electron mobility and smaller energy difference between the direct and the indirect energy bandgaps. Currently, materials used in focal plane array (FPA) have lots of kinds, such as: CdZnTe, HgCdTe (MCT), etc. In the near infrared wavelength, InGaAs is a main material as an active layer. It is difficult to cover all infrared region. We can use germanium-tin (GeSn) FPA to cover all infrared wavelength.
In this study, we add tin into Ge to form GeSn grown by molecular beam
epitaxy (MBE) and fabricate PIN photodetectors. We investigate the temperature dependence of responsivity for Ge0.975Sn0.025 photodetector and research for its characteristics. On this basis, we eventually want to make GeSn FPA used in the near-infrared region .


口試委員會審定書…………………........………………………………#
誌謝…………………………………………….……….…...………… i
Content……………………………………………………….………ii
中文摘要………………………………………………………..……iv
Abstract…………………………………………………………………v
Figure index……………………………...…………………………….vi
Table index…………………………………………………………..x
Chapter 1 Introduction…………………………………………..……..1
1.1 Motivation……………………………………………………………..…….1
1.2 Band-gap engineering and group IV semiconductor materials……….3
1.3 Strain effect………………………………………………………………..6
1.3.1 Heterojunction………………………………………………………….7
1.3.2 Critical thickness……………………………………………………….8
1.3.3 Two dimensional electron gas (2DEG)…………………….…………9
1.4 GeSn alloy………………………………….…….…………………………11
1.5 Group IV optical device and interconnections………………..………..13
1.5.1 Interconnections…………………….………………………………..13
1.5.2 Absorptions in photodetector……………………………………….15
1.5.3 Luminescence with emitting diode……………………………………18
1.5.4 Temperature dependent principle…………………..…………………21
Chapter 2 Fabrication equipment and measurement setup……23
2.1 Fabrication equipment…………………………………………………..23
2.1.1 Molecular beam epitaxy…………………………………23
2.1.2 Mask aligner…………………………………………………………26
2.1.3 Reactive ion etcher……………………………………………27
2.1.4 Plasma enhanced chemical vapor
deposition………………………29
2.1.5 Electron beam metal
evaporator……………………………………..30
2.1.6 Manual wire bonder………………………………………………32

2.2 Measurement setup…………………………………………………….….33
2.2.1 Transmission electron microscopy…………33
2.2.2 X-ray diffraction……………………………………………34
2.2.3 Laboratory cryogenic system………………………36

Chapter 3 Fabrication of Ge/Ge0.975Sn0.025/Ge

photodiode……………………37
3.1 Introduction………………………………….…………………37
3.2 Fabrication of device……………………………….38
3.2.1 Sample structure and
characteristics………………………38
3.2.2 Device processing of
photodiode…………44

Chapter 4 Temperature dependence of Ge/Ge0.975Sn0.025/Ge
photodiode…………………….………………………54
4.1 Introduction……………………………………………54
4.2 Measurement of photodiode ………………………………55
4.2.1 Photocurrent measurement with
back side illumination….......55
4.2.2 Photocurrent measurement……………………58
4.3 Result and discussion……………………………60

Chapter 5 Conclusions and future work…………………………….64
5.1 Conclusions…………………………………………………….64
5.2 Future work…………………………………………………65

References………………………………..……………………………..66


[1] G. E. Moore, Ethics, 1st ed. New York,: Oxford University Press, 1965.
[2] H. Iwai, "Roadmap for 22 nm and beyond," Microelectronic Engineering, vol. 86,
pp. 1520-1528, Jul-Sep 2009.
[3] R. Roucka, J. Mathews, C. Weng, R. Beeler, J. Tolle, J. Menendez, et al.,
"High-Performance Near-IR Photodiodes: A Novel Chemistry-Based Approach
to Ge and Ge-Sn Devices Integrated on Silicon," Ieee Journal of Quantum
Electronics,vol. 47, pp. 213-222, Feb 2011.
[4] J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, et al.,
"Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular
beam epitaxy," Applied Physics Letters, vol. 98, Feb 7 2011.
[5] K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, et al.,
"1.55 mu m direct bandgap electroluminescence from strained n-Ge quantum
wells grown on Si substrates," Applied Physics Letters, vol. 101, Nov 19 2012.
[6] M. El Kurdi, T. Kociniewski, T. P. Ngo, J. Boulmer, D. Debarre, P. Boucaud, et al.,
"Enhanced photoluminescence of heavily n-doped germanium," Applied Physics
Letters, vol. 94, May 11 2009.
[7] D. J. Paul, "Si/SiGe heterostructures: from material and physics to devices and
circuits," Semiconductor Science and Technology, vol. 19, pp. R75-R108, Oct
2004.
[8] K. Pinardi, U. Jain, S. C. Jain, H. E. Maes, R. Van Overstraeten, and M. Willander,
"Critical thickness and strain relaxation in lattice mismatched II-VI
semiconductor layers," Journal of Applied Physics, vol. 83, pp. 4724-4733, May
1 1998.
[9] W. T. Sommer, "Liquid Helium as Barrier to Electrons," Physical Review Letters,
vol. 12, pp. 271-&, 1964.
[10] G. He and H. A. Atwater, "Interband transitions in SnxGe1-x alloys," Physical
Review Letters, vol. 79, pp. 1937-1940, Sep 8 1997.
[11] R. Soref, "The past, present, and future of silicon photonics," Ieee Journal of
Selected Topics in Quantum Electronics, vol. 12, pp. 1678-1687, Nov-Dec 2006.
[12] J. D. Sau and M. L. Cohen, "Possibility of increased mobility in Ge-Sn alloy
system," Physical Review B, vol. 75, Jan 2007.
[13] P. Moontragoon, Z. Ikonic, and P. Harrison, "Band structure calculations of
Si-Ge-Sn alloys: achieving direct band gap materials," Semiconductor Science
and Technology, vol. 22, pp. 742-748, Jul 2007.
[14] Fox M, "Optical Properties of Solids, " Oxford university press, 2010.
[15] Y. P. Varshni, "Temperature Dependence of Energy Gap in Semiconductors,"
Physica, vol. 34, pp. 149-&, 1967.
[16] O. Fidaner, A. K. Okyay, J. E. Roth, R. K. Schaevitz, Y. H. Kuo, K. C. Saraswat, et al.,
"Ge-SiGe quantum-well waveguide photodetectors on silicon for the
near-infrared," Ieee Photonics Technology Letters, vol. 19, pp. 1631-1633,
Sep-Oct 2007.
[17] J. A. Wang and S. Lee, "Ge-Photodetectors for Si-Based Optoelectronic
Integration," Sensors, vol. 11, pp. 696-718, Jan 2011.
[18] W. J. Yin, X. G. Gong, and S. H. Wei, "Origin of the unusually large band-gap
bowing and the breakdown of the band-edge distribution rule in the SnxGe1-x
alloys," Physical Review B, vol. 78, Oct 2008.
[19] H. P. L. de Guevara, A. G. Rodriguez, H. Navarro-Contreras, and M. A. Vidal,
"Nonlinear behavior of the energy gap in Ge1-xSnx alloys at 4 K," Applied
Physics Letters, vol. 91, Oct 15 2007.
[20] C. G. Van De Walle, "Band Lineups and Deformation Potentials in the
Model-Solid Theory," Physical Review B, vol. 39, pp. 1871-1883, Jan 15 1989.
[21] T. Brudevoll, D. S. Citrin, M. Cardona, and N. E. Christensen,
"Electronic-Structure of a-Sn and Its Dependence on Hydrostatic
Strain,"Physical Review B, vol. 48, pp. 8629-8635, Sep 15 1993.
[22] J. Menendez and J. Kouvetakis, "Type-I Ge/Ge1-x-ySixSny strained-layer
heterostructures with a direct Ge bandgap," Applied Physics Letters, vol. 85, pp.
1175-1177, Aug 16 2004.
[23] Bart van Zeghbroeck, Principles of Semiconductor Devices, Boulder, 2006.
[24] Rogalski, "Optical detectors for focal plane arrays," Opto-Electronics
Review,vol. 12, pp. 221-245, Jun 2004.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top